Problems #5

Problem 1. (1 XP) Suppose that the two sequences $(a_n)_{n \ge 0}$ and $(b_n)_{n \ge 0}$ are equal for large enough n. How is that reflected on their generating functions?

Problem 2. (2 XP) Let $p_M(n)$ be the number of integer partitions of n with parts of size at most M. For instance, $p_2(5) = 3$, because we have the partitions (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1).

Determine the ordinary generating function $\sum_{n=0}^{\infty} p_M(n) x^n$. Is the sequence $(p_M(n))_{n \ge 0}$ C-finite?

Problem 3. Let B_n be the number of partitions of a set of size n. For instance, $B_3 = 5$ because the set $\{1, 2, 3\}$ can be partitioned as $\{\{1, 2, 3\}\}, \{\{1, 2\}, \{3\}\}, \{\{1, 3\}, \{2\}\}, \{\{1\}, \{2, 3\}\}, \{\{1\}, \{2\}, \{3\}\}.$

- (a) (1 XP) Express B_{n+1} recursively in terms of $B_n, B_{n-1}, ...$
- (b) (1 XP) Show that the ordinary generating function F(x) of B_n satisfies the functional equation

$$F(x) = 1 + \frac{x}{1-x}F\left(\frac{x}{1-x}\right).$$

(c) (1 XP) Iterate this functional equation to show that we can expand F(x) as

$$F(x) = \sum_{n=0}^{\infty} \frac{x^n}{(1-x)(1-2x)\cdots(1-nx)}.$$

- (d) (1 XP) Determine the exponential generating function for B_n .
- (e) (1 XP) Let C_n be the number of partitions of a set of size n such that each part consists of at least 2 elements. For instance, $C_3 = 4$ because the set $\{1, 2, 3, 4\}$ can be partitioned as $\{\{1, 2, 3, 4\}\}$, $\{\{1, 2\}, \{3, 4\}\}$, $\{\{1, 3\}, \{2, 4\}\}$, $\{\{1, 4\}, \{2, 3\}\}$. Show that $B_n = C_n + C_{n+1}$. Try to give a direct combinatorial proof.
- (f) (1 XP extra) Determine the exponential generating function for the numbers C_n . Numerically verify your result in Sage.
- (g) (1 XP extra) Explore the SetPartitions command in Sage. For instance:
 - Use it to find the 5 partitions of the set $\{1, 2, 3\}$.
 - What is computed by {x for x in SetPartitions(5) if len(x)<=2}?
 - Similarly, but a little more challenging, what is computed by {x for x in SetPartitions(5) if min(map(len,x))>=2}? In particular, what is the interpretation of the following numbers:

Sage] [len({x for x in SetPartitions(n) if min(map(len,x))>=2}) for n in [1..7]]
[0,1,1,4,11,41,162]

- Explain why len(SetPartitions(7)) is much slower than SetPartitions(7).cardinality(). Recall that SetPartitions? will bring up explanations and examples. Putting a ?? at the end of a function, further shows its source code.
- (h) (1 XP extra) Experimentally find (i.e. conjecture) the exponential generating function of the number of partitions of a set of size n such that each part consists of at least 3 elements.
- (i) (1 XP extra) Make a conjecture about the exponential generating function of the number of partitions of a set of size n such that each part consists of at least k elements.