
Midterm #2 � Practice MATH 436/565 � Numerical Analysis
Midterm: Wednesday, Nov 15, 2023

Please print your name:

Reminder. No notes, calculators or tools of any kind will be permitted on the midterm exam.

Problem 1. Determine the minimal polynomial P (x) interpolating (¡2; 1); (0; 1); (1; 1); (3; 2).

(a) Write down the polynomial in Lagrange form.

(b) Write down the polynomial in Newton form.

(c) Suppose the above points lie on the graph of a smooth function f(x). Write down an �explicit� formula for
f(x)¡P (x), the error when using the interpolating polynomial to approximate f(x).

Solution.

(a) The interpolating polynomial in Lagrange form is

P (x)= 1 x(x¡ 1)(x¡ 3)
(¡2)(¡2¡ 1)(¡2¡ 3) + 1 (x+2)(x¡ 1)(x¡ 3)

(2)(¡1)(¡3) +1 (x+2)x(x¡ 3)
(1+2)1(1¡ 3) +2(x+2)x(x¡ 1)

(3+2)3(3¡ 1) :

(If we had a reason to do so (we don't!), we could expand that expression to find P (x)= 1¡ x

15 +
x2

30 +
x3

30 .)

(b) Newton's divided differences for the four points are:

¡2 1
1¡ 1

0¡ (¡2) = 0

0 1 0¡ 0
1¡ (¡2) = 0

1¡ 1
1¡ 0 =0

1

6
¡ 0

3¡ (¡2) =
1
30

1 1
1

2
¡ 0

3¡ 0 =
1
6

2¡ 1
3¡ 1 =

1
2

3 2

Accordingly, reading the coefficients from the top edge of the triangle (as shaded above), the Newton form is

P (x)= 1+0(x+2)+0(x+2)x+ 1
30
(x+2)x(x¡ 1)= 1+ 1

30
(x+2)x(x¡ 1):

(Since the interpolating polynomial is unique, this polynomial must be the same as the one in the first part.)

Comment. Note that the y-coordinate of the first three points is 1. Therefore, the interpolating polynomial for
these three points is simply Q(x)=1. The Newton form of P (x) is P (x)=Q(x)+c3(x+2)x(x¡1) (we discussed
how, in general, the Newton form makes it convenient to add additional point) and we could alternatively find
c3=1/30 by plugging in the fourth point.

(c) f(x)¡P (x)= f (4)(�)
4!

(x+2)x(x¡ 1)(x¡ 3) for some � 2 [¡2; 3] (assuming that x2 [¡2; 3] as well).
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Comment. You don't need to �memorize� the general result we proved in class to write down this error formula.
Instead, note that the term (x+2)x(x¡ 1)(x¡ 3) on the right-hand side is natural because we know that the
error is 0 at x=¡2; 0; 1; 3. On the other hand, (x+2)x(x¡ 1)(x¡ 3) has degree 4 and, therefore, just like for
Taylor expansion, it should go with f (4)(�)/4! (indeed, as we noted in class, Taylor expansion around x= x0
can be considered as the limiting case where the interpolation nodes all become equal to a single x0).

Problem 2. Suppose we approximate f(x)= cos
¡ x
2

�
by the polynomial P (x) interpolating it at x=1; 2; 3.

(a) Without computing P (x), give an upper bound for the error when x=0 and when x= �

2
.

(b) For which x in [0; �] is our bound for the error maximal? What is the bound in that case?

Solution.

(a) The error is

f(x)¡P (x)= f (3)(�)
3!

(x¡ 1)(x¡ 2)(x¡ 3);

where � is between 1;3 and x. Note that f (3)(x)= 1

8
sin

¡ x
2

�
so that jf (3)(�)j6 1

8
. Hence, the error is bounded by

jf(x)¡P (x)j6 1
6
� 1
8
j(x¡ 1)(x¡ 2)(x¡ 3)j:

In particular, in the case x=0,

jf(0)¡P (0)j6 1
48
j(¡1)(¡2)(¡3)j= 1

8
= 0.125;

while, in the case x= �

2
, ������f��2 �¡P� �2 �������6 1

48

��������2 ¡ 1�� �2 ¡ 2�� �2 ¡ 3�������� 0.00729:

Comment. Why is it not surprising that the error bound for x=0 is considerably larger?

(b) Recall that our bound for the error is 1

48 j(x¡ 1)(x¡ 2)(x¡ 3)j.

We need to determine the maximal absolute value of the cubic polynomial e(x)= (x¡ 1)(x¡ 2)(x¡ 3) on the
interval [0; �].

We compute e0(x)=3x2¡12x+11 and find that e0(x)=0 for x=2� 1

3
p . At these values, e

�
2� 1

3
p

�
=� 2

3 3
p �

�0.385. At the endpoints of the interval [0; �], e(0)=¡6 and e(�)� 0.346.

Hence, je(x)j is maximal on [0; �] for x = 0. We already computed that, in this case, the error bound is
jf(0)¡P (0)j6 1

8
.

Problem 3. Suppose we approximate a function f(x) by the polynomial P (x) interpolating it at x=¡1;¡2

3
;
2

3
; 1.

Suppose that we know that jf (n)(x)j6n for all x2 [¡1; 1].

(a) Give an upper bound for the error when x=¡1

6
and when x=0.

(b) Give an upper bound for the error for all x2 [¡1; 1].

(c) Suppose we replace the nodes ¡1;¡2

3
;
2

3
; 1 with four other values. For which choice of these four interpolation

nodes is this upper bound for the error minimal?

(d) For this optimal choice, what is the upper bound for the error for all x2 [¡1; 1]?
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Solution.

(a) The error is

f(x)¡P (x)= f (4)(�)
4!

(x+1)
�
x+ 2

3

��
x¡ 2

3

�
(x¡ 1)= f (4)(�)

4!
(x2¡ 1)

�
x2¡ 4

9

�
;

where � is between ¡1 and 1 (provided that x2 [¡1; 1]). Since 1

4!
jf (4)(�)j6 4

4!
= 1

6
, the error is bounded by

jf(x)¡P (x)j6 1
6

��������(x2¡ 1)�x2¡ 4
9

���������:
If x=¡1

6
, then this bound becomes jf(x)¡P (x)j6 1

6

����¡ 1

36 ¡ 1
�¡ 1

36 ¡
4

9

�����= 1

6
� 175432 � 0.0675.

If x=0, then this bound becomes jf(x)¡P (x)j6 1

6

����(¡1)¡¡4

9

�����= 2

27 � 0.0741.

(b) Consider g(x)= (x2¡ 1)
¡
x2¡ 4

9

�
=x4¡ 13

9
x2+ 4

9
. We need to compute max

x2[¡1;1]
jg(x)j.

Since g(�1)=0, the maximum value of jg(x)j must be attained at a point where g 0(x)= 0.

We compute g 0(x)= 4x3¡ 26
9
x. Hence g 0(x)= 0 if x=0 or x=�1

3

13
2

q
.

Since jg(0)j= 4

9
and

������g��1

3

13
2

q �������= 25
324 <

4

9
, we conclude that max

x2[¡1;1]
jg(x)j= 4

9
.

Therefore, our bound for the error is max
x2[¡1;1]

jf(x)¡P (x)j6 1
6

max
x2[¡1;1]

��������(x2¡ 1)�x2¡ 4
9

���������= 1
6
� 4
9
= 2

27
� 0.0741.

(c) We have shown in class that maxx2[¡1;1] j(x¡x1)� � �(x¡xn)j is minimal for the Chebyshev nodes

xj= cos
�
(2j ¡ 1)
2n

�

�
; j=1; : : : ; n:

In our case, n=4, and the four Chebyshev nodes are cos
¡ �
8

�
; cos

¡ 3�
8

�
; cos

¡ 5�
8

�
; cos

¡ 7�
8

�
.

(d) For the Chebyshev nodes, we have maxx2[¡1;1] j(x¡x1)� � �(x¡xn)j=
1

2n¡1
.

In our case, the bound for the error is max
x2[¡1;1]

jf(x)¡P (x)j6 1
6

max
x2[¡1;1]

j(x¡x1)���(x¡x4)j=
1
6
� 1
23
= 1

48
�0.0208.

Problem 4. Suppose that f(x) is a smooth function such that jf (n)(x)j6n! for all x2 [¡1; 1] and all n> 0. Suppose
we approximate f(x) on the interval [¡1; 1] by a polynomial interpolation P (x). How many Chebyshev nodes do we
need to use in order to guarantee that the maximal error is at most 10¡6?

Solution. We know that, using n Chebyshev nodes, the error is bounded as

max
x2[¡;1;1]

jf(x)¡Pn¡1(x)j6
1

2n¡1n!
max

�2[¡;1;1]
jf (n)(�)j6 1

2n¡1
.

We need to choose n so that 2n¡1> 106. Knowing that 210= 1024> 103, we see that 220> 106.

Thus, for n= 21 Chebyshev nodes the maximal error is guaranteed to be less than 10¡6.

Problem 5. Determine the natural cubic spline through (¡3; 1), (0; 3), (2; 1).

Solution. Let us write the spline as S(x)=
�
S1(x); if x2 [¡3; 0];
S2(x); if x2 [0; 2]:
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To simplify our life, we expand both Si around x=0 (the middle knot).

Si(x)= aix3+ bix2+ cix+ di:

� Note that di=Si(0), ci=Si0(0) and bi=
1

2
Si
00(0). Because S(x) is C2 smooth, we have b1= b2, c1= c2 and d1=d2.

We simply write b, c and d for these values in the sequel.

� d=3 because S1(0)=S2(0)= 3.

� S(x) further interpolates the other two points, (¡3; 1) and (2; 1), resulting in the following two equations:

S1(¡3) = ¡27a1+9b¡ 3c+3 =1
S2(2) = 8a2+4b+2c+3 =1

� The natural boundary conditions provide two more equations: (Note that Si00(x)= 6aix+2bi.)

S1
00(¡3) = ¡18a1+2b=0
S2
00(2) = 12a2+2b=0

We use these last two equations to replace a1=
1

9
b and a2=¡1

6
b in the other two equations in terms of b:

¡27 � 1
9
b+9b¡ 3c+3 = 6b¡ 3c+3=1

8
¡
¡1

6
b
�
+4b+2c+3 = 8

3
b+2c+3=1

Solving these two equations in two unknowns, we find b=¡1

2
and c=¡1

3
.

Consequently, a1=
1

9
b=¡ 1

18 and a2=¡1

6
b= 1

12 .

Hence, the desired natural cubic spline is

S(x)= 3¡ 1
3
x¡ 1

2
x2+x3

8<: ¡ 1

18 ; if x2 [¡3; 0];
1

12 ; if x2 [0; 2]:

Problem 6. Recall that a cubic spline S(x) through (x0; y0); : : : ; (xn; yn) with x0<x1< : : : <xn is piecewise defined
by n cubic polynomials S1(x); : : : ; Sn(x) such that S(x) = Si(x) for x 2 [xi¡1; xi]. Name three common boundary
conditions of cubic splines and state their mathematical definition.

Solution. The following are common choices for the boundary conditions of cubic splines:

� natural : S100(x0)=Sn
00(xn)= 0

The resulting splines are simply called natural cubic splines.

� not-a-knot : S1000(x1)=S2
000(x1) and Sn000(xn¡1)=Sn¡1

000 (xn¡1)

� periodic: S10(x0)=Sn
0 (xn) and S100(x0)=Sn

00(xn) (only makes sense if y0= yn)

There are other common choices such clamped cubic splines for which the first derivatives at the endpoints are being set (�clamped�) to
user-specified values.

Problem 7. Obtain approximations for f 0(x) and f 00(x) using the values f(x ¡ 2h), f(x), f(x+ 3h) as follows:
determine the polynomial interpolation corresponding to these values and then use its derivatives to approximate those
of f . In each case, determine the order of the approximation and the leading term of the error.

Armin Straub
straub@southalabama.edu

4



Solution. We first compute the polynomial p(t) that interpolates the three points (x¡ 2h; f(x¡ 2h)), (x; f(x)),
(x+3h; f(x+3h)) using Newton's divided differences:

f [�] f [�; �] f [�; �; �]
x¡ 2h f(x¡ 2h)

f(x)¡ f(x¡ 2h)
2h

:=c1

x f(x) 2f(x+3h)¡ 5f(x)+ 3f(x¡ 2h)
30h2

:=c2
f(x+3h)¡ f(x)

3h
x+3h f(x+3h)

Hence, reading the coefficients from the top edge of the triangle, the interpolating polynomial is

p(t)= f(x)+ c1(t¡x+2h)+ c2(t¡x+2h)(t¡x):

� (approximating f 0(x)) Since p0(t)= c1+ c2(2t¡ 2x+2h), we have

p0(x) = c1+2hc2=
f(x)¡ f(x¡ 2h)

2h
+ 2f(x+3h)¡ 5f(x)+ 3f(x¡ 2h)

15h

= 4f(x+3h)+ 5f(x)¡ 9f(x¡ 2h)
30h

:

This is our approximation for f 0(x). To determine the order and the error (we expect the error to be of the
form Ch2+O(h3) and, since we divide by h, so we expand up to h3 in the following), we combine

f(x+h) = f(x)+ f 0(x)h+ 1
2
f 00(x)h2+ f 000(x)

6
h3+O(h4);

f(x¡ 2h) = f(x)¡ 2f 0(x)h+2f 00(x)h2¡ 4f 000(x)
3

h3+O(h4);

f(x+3h) = f(x)+ 3f 0(x)h+ 9
2
f 00(x)h2+ 9f 000(x)

2
h3+O(h4)

to find

4f(x+3h)+ 5f(x)¡ 9f(x¡ 2h)= 30f 0(x)h+ 30f 000(x)h3+O(h4):

Hence, dividing by 30h, we conclude that

4f(x+3h)+ 5f(x)¡ 9f(x¡ 2h)
30h

= f 0(x)+ f 000(x)h2+O(h3):

Consequently, the approximation is of order 2.

� (approximating f 00(x)) Since p00(t)= 2c2, we have p00(x)= 2c2=
2f(x+3h)¡ 5f(x)+ 3f(x¡ 2h)

15h2
.

This is our approximation for f 00(x). To determine the order and the error, we proceed as before to find

2f(x+3h)¡ 5f(x)+ 3f(x¡ 2h)= 15f 00(x)h2+5f 000(x)h3+O(h4):

Hence, dividing by 15h2, we conclude that

2f(x+3h)¡ 5f(x)+ 3f(x¡ 2h)
15h2

= f 00(x)+ 1
3
f 000(x)h+O(h2):

Consequently, the approximation is of order 1.
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Problem 8. Suppose that A
¡ 1
4

�
= a and A

¡ 1

10

�
= b are approximations of order 4 of some quantity A�. What is the

approximation we obtain from using Richardson extrapolation?

Solution. Since A(h) is an approximation of order 4, we expect A(h)�A�+Ch4 for some constant C.

Correspondingly, A
¡ 1
4

�
�A�+ 1

44
C and A

¡ 1

10

�
�A�+ 1

104C.

Hence, 104A
¡ 1

10

�
¡ 44A

¡ 1
4

�
� (104¡ 44)A�.

The Richardson extrapolation is
104A

�
1
10

�
¡ 44A

�
1
4

�
104¡ 44 = 10000

9744 b¡
256
9744a.

Problem 9. We have shown that A(h)= 1

h2
[f(x+h)¡ 2f(x)+ f(x¡h)] is an approximation of f 00(x) of order 2.

(a) Determine the leading term of the error.

(b) Apply Richardson extrapolation to A(h) and A(3h) to obtain an approximation of f 00(x) of higher order.

(c) Explain in a sentence why the resulting approximation is of order 4 (rather than 3).

Solution.

(a) Our goal is to compute C such that A(h) = f 00(x) +Ch2+O(h3). By Taylor's theorem, we have (note that,
because we will divide by h2, we know from the beginning that we need to compute up to h4 in the following)

f(x+h) = f(x)+hf 0(x)+ h2

2
f 00(x)+ h3

6
f 000(x)+ h4

24
f (4)(x)+O(h5);

f(x¡h) = f(x)¡hf 0(x)+ h2

2
f 00(x)¡ h3

6
f 000(x)+ h4

24
f (4)(x)+O(h5):

Adding these and subtracting 2f(x), we find

f(x+h)¡ 2f(x)+ f(x¡h)=h2f 00(x)+ h4

12
f (4)(x)+O(h5):

Hence, A(h)= f 00(x)+ h2

12 f
(4)(x)+O(h3).

Comment. By computing one more term, we see that we even have A(h)= f 00(x)+ h2

12 f
(4)(x)+O(h4).

(b) We just showed that A(h) = f 00(x) +Ch2+O(h3) for some constant C (we even determined C but it doesn't
matter here). Correspondingly, A(3h)= f 00(x)+ 9Ch2+O(h3). Hence, 9A(h)¡A(3h)= (9¡ 1)f 00(x)+O(h3).

The Richardson extrapolation of A(h) and A(3h) therefore is:

9A(h)¡A(3h)
8

= 9
8h2

[f(x+h)¡ 2f(x)+ f(x¡h)]¡ 1
8(3h)2

[f(x+3h)¡ 2f(x)+ f(x¡ 3h)]

= 1
72h2

[¡f(x+3h)+ 81f(x+h)¡ 160f(x)+ 81f(x¡h)¡ f(x¡ 3h)]

This is an approximation of f 00(x) of higher order.

Comment. With some more work, we find that the error is ¡ 1

40 f
(6)(x)h4+O(h6) so that this is an approxi-

mation of order 4.

(c) In short, this is because our approximation is an even function of h.

Because we started with an approximation of order 2, the Richardson extrapolation of A(h) and A(3h) has
at least order 3. However, A(h) is an even function of h (because A(¡h) =A(h)). Consequently, A(3h) as
well as the extrapolation are even functions of h as well. Therefore, the error, which we know is of the form
Ch3+Dh4+O(h5), can only feature even powers of h. Thus C =0 and the error must be of order at least 4.
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Problem 10. Use the trapezoidal rule to approximate
Z
0

1 1
x2+1

dx= �
4
.

(a) Use h= 1

3
and h= 1

6
.

(b) Using Richardson extrapolation, combine the previous two approximations to obtain an approximation of higher
order. What are absolute and relative error?

(c) The extrapolated approximation is equivalent to the outcome of which method applied with h= 1

6
?

Solution. Let us write f(x)= 1

x2+1
.

(a) h= 1
3
:
Z
0

1 1
x2+1

dx� h
2

�
f(0)+ 2f

�
1
3

�
+2f

�
2
3

�
+ f(1)

�
= 1
6

�
1+2 � 9

10
+2 � 9

13
+ 1
2

�
= 203

260
� 0.7808

h= 1
6
:
Z
0

1 1
x2+1

dx� h

2

�
f(0)+ 2f

�
1
6

�
+2f

�
1
3

�
+2f

�
1
2

�
+2f

�
2
3

�
+2f

�
5
6

�
+ f(1)

�
= 1

12

�
1+2 � 36

37
+2 � 9

10
+2 � 4

5
+2 � 9

13
+2 � 36

61
+ 1
2

�
= 2,761,249
3,520,920

� 0.7842

(b) Let us write A(h)= 203
260 and A

�
h

2

�
= 2,761,249

3,520,920 with h= 1

3
for our two approximations, and A� for the true value

of the integral.

Since A(h) is an approximation of order 2, we expect A(h)�A�+Ch2 for some constant C.

Correspondingly, A
�
h

2

�
�A�+ 1

4
Ch2. Hence, 4A

�
h

2

�
¡A(h)� (4¡ 1)A�=3A�.

Hence, the Richardson extrapolation is R := 1

3

h
4A

�
h

2

�
¡A(h)

i
= 1

3

h
4 � 2,761,249

3,520,920 ¡
203
260

i
= 829,597

1,056,276 � 0.78539795.

Since the exact value is �

4
� 0.78539816, the absolute error is

����R¡ �

4

����� 2.18 � 10¡7 while the relative error is����¡R¡ �

4

�
/
¡ �
4

������ 2.78 � 10¡7.

(Of course, you will not have to calculate with numbers like the above by hand on the exam.)

(c) Simpson's rule
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