
Notes for Lecture 23 Wed, 11/29/2023

Runge�Kutta methods

The midpoint method can be written as:

xn+1 = xn+h

yn+1 = yn+K1h

K0 = f(xn; yn)

K1 = f

�
xn+

h
2
; yn+K0

h
2

�
Note that replacing the rule by yn+1 = yn + K0h results in Euler's method. Indeed, both K0 and K1 are
approximations of the slope y 0 that we need for stepping from xn to xn+1=xn+h.

Adding further such approximations Ki to the mix, one can eliminate further terms in the error
expansion and obtain higher order methods known as Runge�Kutta methods.
The midpoint method is an example of a Runge�Kutta method of order 2 (but there are others as well).
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods

Of particular practical importance is the following instance:

(Runge�Kutta method of order 4)

xn+1 = xn+h

yn+1 = yn+
1
6
(K0+2K1+2K2+K3)h

K0 = f(xn; yn)

K1 = f

�
xn+

h
2
; yn+K0

h
2

�
K2 = f

�
xn+

h
2
; yn+K1

h
2

�
K3 = f(xn+h; yn+K2h)

Comment. Note how each of K0; K1; K2; K3 is an approximation of y 0 on the interval [xn; xn+1] (with K0

approximating y 0(xn) and K3 approximating y 0(xn+1)). By taking the appropriate weighted average, we are
able to get an approximation with a higher order.
Advanced comment. Note that the weights (with K1 and K2 combined because they both correspond to the
midpoint xn+h/2) are the same as in Simpson's rule for numerical integration. That is more than a coincidence.
Indeed, if f(x; y)= f(x) does not depend on y, then solving the DE is equivalent to integrating f(x) and the
Runge�Kutta method of order 4 turns into Simpson's rule.

Example 147. Python Let us implement the Runge�Kutta method of order 4.

>>> def runge_kutta4(f, x0, y0, xmax, n):
h = (xmax - x0) / n
ypoints = [y0]
for i in range(n):

K0 = f(x0,y0)
K1 = f(x0+h/2, y0+K0*h/2)
K2 = f(x0+h/2, y0+K1*h/2)
K3 = f(x0+h, y0+K2*h)
y0 = y0 + (K0 + 2*K1 + 2*K2 + K3)*h/6
x0 = x0 + h
ypoints.append(y0)

return ypoints

Armin Straub
straub@southalabama.edu

94

https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods

First, for comparison with earlier methods, let us apply the method to the IVP y 0= y, y(0)= 1,
which has the exact solution y(x)= ex with y(1)= e� 2.718.

>>> def f_y(x, y):
return y

>>> runge_kutta4(f_y, 0, 1, 1, 4)

[1, 1.2840169270833333, 1.648699469036526, 2.1169580259162033, 2.718209939201323]

The following convincingly illustrates that the error is indeed O(h4).
>>> from math import e

>>> [runge_kutta4(f_y, 0, 1, 1, 10**n)[-1] - e for n in range(6)]

[-0.009948495125712054, -2.0843238792700447e-06, -2.2464119453502462e-10, -
2.042810365310288e-14, 1.1546319456101628e-14, 6.217248937900877e-15]

Pause for a moment to really appreciate how much better these errors are in comparison with Euler's method!
Whereas computing 105 values with Euler's method resulted in an error of 1.36 �10¡5, we are now able to obtain
an error of 2.04 � 10¡14 with only 103 values.

As a second example, let us consider as in Example 144 the IVP y 0 = cos(x)y with y(0) = 1,
which has the exact solution y(x)= esin(x) with y(2)= esin(2)� 2.48258.

>>> def f_cosx_y(x, y):
return cos(x)*y

>>> runge_kutta4(f_cosx_y, 0, 1, 2, 4)

[1, 1.614859377441316, 2.3191895982789603, 2.7107641474177457, 2.481902218021582]

The following again convincingly illustrates that the error is indeed O(h4).
>>> from math import e

>>> [runge_kutta4(f_cosx_y, 0, 1, 2, 10**n)[-1] - e**sin(2) for n in range(5)]

[-0.12999578105593113, -1.726387102785054e-05, -1.6494263732624859e-09, -
1.6431300764452317e-13, 3.419486915845482e-13]

Important comment. Note that, in contrast to Example 144, we did not have to compute partial derivatives of
f(x; y)= cos(x)y by hand. Instead, we were able to simply use cos(x)y in our runge_kutta4 function.

Armin Straub
straub@southalabama.edu

95

A glance at discretizing PDEs

One of the most important partial differential equations is the following Laplace equation which,
for instance, models the steady-state temperature u(x; y) of a region in two-dimensional space.

(Laplace equation)

uxx+uyy=0

Comment. Here, for instance, uxx=
@2

@x2
u(x; y) is used to denote two partial derivatives with respect to x.

Comment. The Laplace equation is so important that its solutions have their own name: harmonic functions.
Comment. Also known as the �potential equation�; satisfied by electric/gravitational potential functions.
Recall from Calculus III (if you have taken that class) that the gradient of a scalar function f(x; y) is the vector

field F = grad f =rf =
�
fx(x; y)
fy(x; y)

�
. One says that F is a gradient field and f is a potential function for F

(for instance, F could be a gravitational field with gravitational potential f).

The divergence of a vector field G=
�
g(x; y)
h(x; y)

�
is divG= gx+hy. One also writes divG=r �G.

The gradient field of a scalar function f is divergence-free if and only if f satisfies the Laplace equation �f =0.
Other notations. �f = divgrad f =r �rf =r2f
Boundary conditions. For steady-state temperatures profiles, it is natural to prescribe the temperature on the
boundary of a region R�R2 (or R�R3 in the 3D case).
Comment. Gravitational and electrostatic potentials (not in the vacuum) satisfy the Poisson equation uxx+
uyy= f(x; y), the inhomogeneous version of the Laplace equation.

One way to describe a unique solution to the Laplace equation is by specifying the values of u(x; y)
along the boundary of a region. This is called a Dirichlet problem:

(Dirichlet problem)
uxx+uyy=0 within region R

u(x; y)= f(x; y) on boundary of R

In general. A Dirichlet problem consists of a PDE, that needs to hold within a region R, and prescribed values
on the boundary of that region (�Dirichlet boundary conditions�).

Discretizing the Laplace operator

Recall from Example 115 that the following central difference is an order 2 approximation of f 00(x).

f 00(x)� 1
h2
[f(x+h)¡ 2f(x)+ f(x¡h)]:

Armin Straub
straub@southalabama.edu

96

Example 148. (discretizing �) Use the above central difference approximation for second
derivatives to derive a finite difference for �u=uxx+uyy in 2D.

Solution. �u� 1

h2
[u(x+h; y)+u(x¡h; y)+u(x; y+h)+u(x; y¡h)¡ 4u(x; y)]

Notation. This finite difference is typically represented as 1

h2

24 1
1 ¡4 1

1

35, the five-point stencil.
Comment. Recall that solutions to �u=0 are supposed to describe steady-state temperature distributions. We
can see from our discretization that this is reasonable. Namely, �u=0 becomes approximately equivalent to

u(x; y)=
1
4
(u(x+h; y)+u(x¡h; y)+u(x; y+h)+u(x; y¡h)):

In other words, the temperature u(x; y) at a point (x; y) should be the average of the temperatures of its four
�neighbors� u(x+h; y) (right), u(x¡h; y) (left), u(x; y+h) (top), u(x; y¡h) (bottom).
Comment. Think about how to use this finite difference to numerically solve the corresponding Dirichlet problem
by discretizing (one equation per lattice point).

Armin Straub
straub@southalabama.edu

97

