
Notes for Lecture 21 Mon, 11/20/2023

Example 140. (cont'd) Consider the IVP y 0= y, y(0) = 1. Approximate the solution y(x) for
x 2 [0; 1] using Euler's method with n steps for several values of n. In each case, what is the
approximation for y(1)?
Solution. Since the real solution is y(x)= ex so that, in particular, the exact solution is y(1)= e� 2.71828.
We proceed as we did in Example 139 in the case n=4 and apply Euler's method with f(x; y)= y:

xn+1 = xn+h

yn+1 = yn+h f(xn; yn)

=yn

=(1+h)yn

We observe that it follows from yn+1= (1+ h)yn that yn= (1+ h)ny0. Since y0=1 and h= 1¡ 0
n

=
1

n
, we

conclude that

xn=1; yn=

�
1+

1
n

�n
:

[For instance, for n=4, we get x4=1, y4=
�
5

4

�
4
� 2.4414 as in Example 139.]

In particular, our approximation for y(1) is
�
1+

1

n

�n
.

Here are a few values spelled out:

n=1:

�
1+

1
n

�n
=2

n=4:

�
1+

1
n

�n
= 2.4414:::

n= 12:
�
1+

1
n

�n
= 2.6130:::

n= 100:
�
1+

1
n

�n
= 2.7048:::

n= 365:
�
1+

1
n

�n
= 2.7145:::

n= 1000:
�
1+

1
n

�n
= 2.7169:::

n!1:

�
1+

1
n

�n
! e= 2.71828:::

We can see that Euler's method converges to the correct value as n!1. On the other hand, we can see that it
doesn't converge impressively fast. That is why, for serious applications, one usually doesn't use Euler's method
directly but rather higher-order methods derived from the same principles (such as Runge�Kutta methods).

Interpretation. Note that we can interpret the above values in terms of compound interest. We start with initial
capital of y(0)=1 and we are interested in the capital y(1) after 1 year if we receive interest at an annual rate
of 100%:

� If we receive a single interest payment at the end of the year, then y(1)= 2 (case n=1 above).

� If we receive quarterly interest payments of 100%
4

=25% each, then y(1)=(1.25)4=2.441::: (case n=4).

� If we receive monthly interest payments of 100%
12

=
1

12
each, then y(1)= 2.6130::: (case n= 12).

� If we receive daily interest payments of 100%
365

=
1

365
each, then y(1)= 2.7145::: (case n= 365).

It is natural to wonder what happens if interest payments are made more and more frequently. Well, we already
know the answer! If interest is compounded continuously, then we have e in our bank account after one year.

Armin Straub
straub@southalabama.edu

87



Example 141. Python Let us implement Euler's method to redo and extend Example 139.

>>> def euler(f, x0, y0, xmax, n):
h = (xmax - x0) / n
ypoints = [y0]
for i in range(n):

y0 = y0 + f(x0,y0)*h
x0 = x0 + h
ypoints.append(y0)

return ypoints

>>> def f_y(x, y):
return y

If we choose the number of steps n to be 4 and xmax to be 1 (because we want xn= 1), then
the following matches exactly our computation in Example 139:

>>> euler(f_y, 0, 1, 1, 4)

[1, 1.25, 1.5625, 1.953125, 2.44140625]

As expected, increasing the number of steps provides better approximations to the exact solution
y(x)= ex with y(1)= e� 2.718.

>>> euler(f_y, 0, 1, 1, 10)

[1, 1.1, 1.2100000000000002, 1.3310000000000002, 1.4641000000000002, 1.61051,
1.7715610000000002, 1.9487171, 2.1435888100000002, 2.357947691, 2.5937424601]

>>> euler(f_y, 0, 1, 1, 100)[-1]

2.704813829421526

If ypoints is a list, then its elements can be accessed as ypoints[0], ypoints[1], ::: Moreover, we can access
the last element as ypoints[-1]. For instance, above, we used euler_e(f, 0, 1, 1, 100)[-1] to get the
last element of the 101 approximations y0; y1; :::; y100. That last element is the approximation of y(1)= e.

The following convincingly illustrates that the error in Euler's method is O(h).
>>> from math import e

>>> [euler(f_y, 0, 1, 1, 10**n)[-1] - e for n in range(6)]

[-0.7182818284590451, -0.124539368359045, -0.013467999037519274, -
0.0013578962231490799, -0.00013590163381849152, -1.3591284549807625e-05]

However, note that our computer had to work pretty hard to get the final approximation, because that entailed
computing 105 values. We clearly need a higher order method in order to compute to higher accuracy.
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Taylor methods

(Taylor method of order k) The following is an order k method for solving IVPs:

xn+1 = xn+h

yn+1 = yn+ f(xn; yn)h+
1

2
f 0(xn; yn)h2+ ���+ 1

k!
f (k¡1)(xn; yn)hk

where f (n)(x; y) is short for dn

dxn
f(x; y(x)) (expressed in terms of f and its partial derivatives).

For instance. f 0(x; y)= d

dx
f(x; y(x))= fx(x; y)+ fy(x; y)y

0(x)= fx(x; y)+ fy(x; y)f(x; y)

Especially for higher derivatives, it is easier to compute these for specific f . See next example.
Comment. As for Euler's method, being an order k method means that the method has a global error that is
O(hk) (while the local truncation error is O(hk+1); note that we can see this because we truncate the Taylor
expansion of y(x) after hk so that the next term is O(hk+1)).

Example 142. Spell out the Taylor method of order 2 for numerically solving the IVP

y 0= cos(x)y; y(0)=1:

Solution. The Taylor method of order 2 is based on the Taylor expansion

y(x+h)= y(x)+ y 0(x)h+
1

2
y00(x)h2+O(h3);

where we have a local truncation error of O(h3) so that the global error will be O(h2).
From the DE we know that y 0(x)= cos(x)y, which is f(x; y). We differentiate this to obtain

y00(x) =
d
dx

cos(x)y=¡sin(x)y+ cos(x)y 0=¡sin(x)y+ cos2(x) y

= (¡sin(x)+ cos2(x))y;

which is f 0(x; y). Hence, the Taylor method of order 2 takes the form:

yn+1 = yn+ f(xn; yn)h+
1

2
f 0(xn; yn)h

2

= yn+ cos(xn)ynh+
1

2
((¡sin(xn)+ cos2(xn))yn)h2

For any choice of h, we can therefore compute (x1; y1); (x2; y2); ::: starting with (x0; y0) by the above recursive
formula combined with xn+1=xn+h.
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