
Notes for Lecture 19 Mon, 11/6/2023

Numerical integration (also known as quadrature)
To numerically integrate a function f(x) on an interval [a; b], one usually uses approximations of
the form Z

a

b

f(x)dx � w0f(x0)+ ���+wnf(xn)=
X
i=0

n

wif(xi);

where the points xi and the weights wi are chosen appropriately.
Comment. Such quadrature rules are typically judged by the maximal degree d of polynomials that they can
integrate without error. For instance, to correctly integrate constant functions (degree 0 polynomials), the weights
need to be such that they add up to b¡ a. (Why?!)

Common quadrature rules include:

� Newton�Cotes rules: equally spaced points xi
These are most useful if f(x) is already computed at equally spaced points, or if evaluation is fast.
There are closed Newton�Cotes rules and open ones. Open means that a and b are not part of the xi.

� Gaussian quadrature: the xi are not equally spaced but chosen carefully
Choosing the xi is similar to our discussion of Chebyshev nodes in polynomial interpolation.
Gaussian quadrature is particularly useful if f(x) is expensive to compute.

Comment. In the case of integrable singularities, such as in
R
0
1 1

x
p dx, we cannot use closed Newton�Cotes.

Because of time constraints, we will focus on the simplest example of a closed Newton�Cotes rule,
namely the trapezoidal rule.
We will then see that combining this with Richardson extrapolation, we can obtain higher order Newton�Cotes
rules such as Simpson's rule.

The (composite) trapezoidal rule

Given equally spaced nodes x0; x1; :::; xn with x0= a and xn= b, we interpolate f(x) on each
segment [xi¡1; xi] by a linear function. Writing h= (b¡ a)/n for the distance between nodes,
the resulting integration rule is the following:

(trapezoidal rule) The following is an approximation of order 2:Z
a

b

f(x)dx� h
2
[f(x0)+ 2f(x1)+ ���+2f(xn¡1)+ f(xn)]

Why? On each segment [xi¡1;xi], we approximate f(x) by a linear function so that the integral on that segment
becomes the area of a trapezoid and we getZ

xi¡1

xi
f(x)dx�width � average height

area

=h � f(xi¡1)+ f(xi)

2
=
h
2
f(xi¡1)+

h
2
f(xi):

Make a sketch! Adding together the integrals over all segments, each node (except x0 and xn) will show up
twice (hence the factor of 2 in front of f(x1); :::; f(xn¡1)) and we get the claimed integration rule. The fact
that the trapezoidal rule provides an approximation of order 2 is proved in Theorem 127 below.

Sanity check. Note that the weights are h

2
for the first and last node, and h for the others. The sum of the

weights is 2 � h
2
+(n¡ 1) �h=nh= b¡a. That is what we need to integrate constant functions without error.

Indeed, from the construction it is clear that the composite trapezoidal rule integrates linear functions exactly.
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Theorem 127. (trapezoidal rule with error term) If f is C2 smooth, thenZ
a

b

f(x)dx= h
2
[f(x0)+ 2f(x1)+ ���+2f(xn¡1)+ f(xn)]¡

(b¡ a)
12

f 00(�)h2

for some � 2 [a; b]. In particular, the trapezoidal rule is of order 2.

Proof. On each segment [xi¡1; xi], the error of the interpolation is

f(x)= linear approximation +
1
2
f 00(�)(x¡xi¡1)(x¡xi):

Hence, when integratingZ
xi¡1

xi
f(x)dx=

h
2
f(xi¡1)+

h
2
f(xi)

integral of linear approx.

+

Z
xi¡1

xi 1
2
f 00(�)(x¡xi¡1)(x¡xi)dx

errori

;

so that the error when integrating is

errori=
1
2
f 00( )

Z
xi¡1

xi

(x¡xi¡1)(x¡ xi)dx

=
R
0
hx(x¡h)dx=

h
1
3
x3¡h

2
x2

i
0

h
=¡1

6
h3

=¡ 1
12
f 00( )h3

where  is some value between xi¡1 and xi. Let us briefly justify the �pulling out� of f 00(�) even though �
depends on x. Note that (x¡xi¡1)(x¡xi) is always 60 in the integral and, therefore, does not change sign.
This means that the error integral lies between the corresponding integrals where we replace f 00(�) with its
maximum value M and minimum value L; the values M and L no longer depend on x and therefore can be
pulled out of the integral. The above computation then shows that errori is between ¡

1

12h
3M and ¡ 1

12h
3L,

hence must be equal to ¡ 1

12
h3m for some m2 [L;M ]. Since L and M are the minimum and maximum value

of f 00 on [xi¡1; xi], and since f 00 is continuous, it follows that m= f 00( ) for some  .
To get the overall error, we need to add the errors ¡ 1

12
f 00( i)h3 from each segment [xi¡1; xi], where i= 1;

2; :::; n and where  i2 [xi¡1; xi]. The result is

¡ 1
12
f 00( 1)h3+ ���+¡

1
12
f 00( n)h3=¡

nh
12

f 00( 1)+ ���+ f 00( n)
n

=average=f 00(�)

h2=¡b¡ a
12

f 00(�)h2;

where � is some value between a and b. �

Comment. A closer inspection of our proof shows that the f 00(�) in the error formula converges, as h! 0, to
the average value of f 00 on [a; b]. This means that we have a way to obtain an error estimate (rather than only
an error bound). This observation is also useful because it shows that the error is of a form that allows us to
perform Richardson extrapolation.
Advanced comment. Indeed, using the Euler�Maclaurin one can show that the error is

¡f
0(b)¡ f 0(a)

12
h2+

f 000(b)¡ f 000(a)
720

h4+ :::¡B2m
f (2m¡1)(b)¡ f (2m¡1)(a)

(2m)!
h2m+O(h6);

where the B2m are rational numbers known as Bernoulli numbers (provided, of course, that f is C2m¡1

smooth). The fact that only even powers of h show up reflects the fact that the trapezoidal rule is symmetric
(and therefore correctly integrates (x¡ c)n where c=(a+ b)/2 and n is odd).
Note that this more precise form of the error tells us that the Richardson extrapolation of the trapezoidal rule
will be of order 4 (rather than order 3).
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Example 128. Use to approximate
Z
1

31
x
dx= log(3)� 1.09861.

(a) Use the trapezoidal rule with h=1.

(b) Use the trapezoidal rule with h=1/2.

(c) Using Richardson extrapolation, combine the previous two approximations to obtain an
approximation of higher order. What are absolute and relative error?

Comment. We will see in the next section that this is equivalent to using Simpson's rule!

Solution. Let us write f(x)= 1

x
.

(a)
Z
1

3

f(x) dx� h
2
[f(1)+2f(2)+ f(3)]=

1
2

�
1+2 � 1

2
+
1
3

�
=
7
6
� 1.1667

Comment. Make a sketch! Can you explain why our approximation (for any h) will be an overestimate
of the true value of the integral?

(b)
Z
1

3

f(x) dx� h
2

�
f(1)+2f

�
3
2

�
+2f(2)+2f

�
5
2

�
+ f(3)

�
=
1
4

�
1+2 � 2

3
+2 � 1

2
+2 � 2

5
+
1
3

�
=
67
60
� 1.1167

Comment. Note that the previous error
������log(3)¡ 7

6

�������0.068 (h=1) is roughly 3.8 times as large as our

current error
������log(3)¡ 67

60

�������0.018 (h=1/2). Since 3.8� 4, this is in line with what we expect from an

order 2 method (in general, we can only expect to observe this for sufficiently small h).

(c) Let us write A(h) and A
�
h

2

�
for our two approximations, and A� for the true value of the integral.

Since A(h) is an approximation of order 2, we expect A(h)�A�+Ch2 for some constant C.

Correspondingly, A
�
h

2

�
�A�+ 1

4
Ch2. Hence, 4A

�
h

2

�
¡A(h)� (4¡ 1)A�=3A�.

Therefore, the Richardson extrapolation is 1
3

h
4A

�
h

2

�
¡A(h)

i
=
1

3

h
4 � 6760 ¡

7

6

i
=

11
10 = 1.1.

The absolute error is j1.1¡ log(3)j � 0.00139 and the relative error is
������1.1¡ log(3)

log(3)

������� 0.00126.

Comment. Note that 1
3

h
4A

�
h

2

�
¡A(h)

i
=
h

3

h
f(1)+4f

�
3

2

�
+2f(2)+4f

�
5

2

�
+ f(3)

i
. These are the

precisely the weights of Simpson's rule.

Example 129. Python Let us redo Example 128 by implementing the trapezoidal rule.

>>> def trapezoidal_rule(f, a, b, n):
h = (b - a) / n
integral = f(a) + f(b)
for i in range(1,n):

integral += 2*f(a + i*h)
return h/2*integral

>>> def f(x):
return 1/x

Comment. Writing x += y is a useful and common short alternative to x = x + y.
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Choosing n to be 2 and 4 is equivalent to h= 3¡ 1
2

=1 and h= 3¡ 1
4

= 1

2
and so we get the same

values as in Example 128:

>>> trapezoidal_rule(f, 1, 3, 2)

1.1666666666666665

>>> trapezoidal_rule(f, 1, 3, 4)

1.1166666666666667Your location

As expected, further increasing n produces better approximations:

>>> [trapezoidal_rule(f, 1, 3, 10**n) for n in range(1,4)]

[1.1015623265623264, 1.0986419169811203, 1.0986125849642736]

Indeed, the following convincingly illustrates that the error in the trapezoidal rule is O(h2).

>>> from math import log

>>> [trapezoidal_rule(f, 1, 3, 10**n) - log(3) for n in range(1,6)]

[0.0029500378942166616, 2.9628313010565677e-05, 2.962961638264261e-07,
2.9629636522088276e-09, 2.962430301067798e-11]

However, note that our computer had to work pretty hard to get the final approximation, because that entailed
computing about 105 values. We clearly should use a higher order method in order to compute to higher accuracy.
One option is to do what we did in the last part of Example 128.

Simpson's rule

Let us spell out what happens in general when we proceed as in the last part of Example 128.

We start with T (h), the trapezoidal rule applied with step size h, which is given by

T (h)= h
2
[f(x0)+ 2f(x1)+ ���+2f(xn¡1)+ f(xn)]:

Then, since T (h) is an approximation of order N =2, the Richardson extrapolation

S(h) := 2NT (h)¡T (2h)
2N ¡ 1 = 4

3
T (h)¡ 1

3
T (2h)

is an approximation of higher order, known as Simpson's rule. It takes the following form:

(Simpson's rule) Suppose n is even. The following is an approximation of order 4:Z
a

b

f(x)dx� h
3
[f(x0)+ 4f(x1)+ 2f(x2)+ 4f(x3)+ ���+2f(xn¡2)+ 4f(xn¡1)+ f(xn)]
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Proof. To see this, note that the trapezoidal approximations T (h) and T (2h) are given by

T (h) =
h
2
[f(x0)+ 2f(x1)+ ���+2f(xn¡1)+ f(xn)];

T (2h) = h[f(x0)+ 2f(x2)+ ���+2f(xn¡2)+ f(xn)]:

Here, we need n to be even so that T (2h) uses the points x0; x2; :::; xn¡2; xn. Therefore, the Richardson
extrapolation is

S(h)=
4
3
T (h)¡ 1

3
T (2h) =

h
3
[2f(x0)+ 4f(x1)+ ���+4f(xn¡1)+ 2f(xn)]

¡h
3
[f(x0)+ 2f(x2)+ ���+2f(xn¡2)+ f(xn)]

=
h
3
[2f(x0)+ 4f(x1)+ 2f(x2)+ ���+2f(xn¡2)+ 4f(xn¡1)+ 2f(xn)];

where the right-hand side is Simpson's rule. That this is an approximation of order 4 follows because the error of
T (h) is an even function in h, so that the order of S(h) increases to 4 (rather than the otherwise expected 3). �

Alternative approach. We can also proceed like for the trapezoidal rule, except that we use quadratic instead
of linear interpolations on each segment. More precisely, starting with equally spaced nodes x0; x1; :::; xn with
n even, we can interpolate f(x) on each segment [xi¡1; xi+1], with i odd, by a quadratic function p(x). The
integral on that segment works out to beZ

xi¡1

xi+1
f(x)dx�

Z
xi¡1

xi+1
p(x)dx =

work h
3
[f(xi¡1)+ 4f(xi)+ f(xi+1)];

where we wrote h=(b¡a)/n for the distance between nodes. Adding together the integrals over all segments,
each node xi, with i odd, will show up once with the above factor of 4h/3 while xi, with i even, (except x0
and xn) will show up twice with a factor of h/3. We thus again get Simpson's integration rule.
Comment. The above rule is often called Simpson's 1/3 rule. There is also Simpson's 3/8 rule which is derived
similarly but is based on a cubic (instead of a quadratic) interpolation; it thus requires an additional node (the
resulting error term is of the same order but about half).

Similar to Theorem 127, one can show that the error in Simpson's rule is as follows:

Theorem 130. (Simpson's rule with error term) If f is C4 smooth, thenZ
a

b

f(x)dx= h
3
[f(x0)+ 4f(x1)+2f(x2)+ ���+4f(xn¡1)+ f(xn)]¡

(b¡ a)
180

f (4)(�)h4

for some � 2 [a; b].

Comment. In the alternative approach above, we constructed Simpson's rule so that quadratic polynomials would
be integrated without error; the error term tells us that, in fact, cubic polynomials are also integrated without
error. In other words, the error term is a pleasant surprise!

Example 131. Use Simpson's rule with h= 1

2
to approximate

Z
1

31
x
dx= log(3)� 1.09861.

Solution.Z
1

3

f(x) dx� h
3

�
f(1)+ 4f

�
3
2

�
+2f(2)+4f

�
5
2

�
+ f(3)

�
=
1
6

�
1+4 � 2

3
+2 � 1

2
+4 � 2

5
+
1
3

�
=
11
10

= 1.1

Comment. Note that 11
10

is exactly what we obtained in the last part of Example 128.

Indeed, recall that Simpson's rule with h= 1

2
(n=4) is equivalent to applying Richardson extrapolation to the

trapezoidal approximations with h= 1

2
(n=4) and h=1 (n=2).
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Example 132. Python Let us compute
R
1

3 1

x
dx= log(3)�1.09861 by implementing Simpson's

rule. The following code assumes that n is even.

>>> def simpson_rule(f, a, b, n):
h = (b - a) / n
integral = f(a) + f(b)
for i in range(1,n):

if i%2 == 1:
integral += 4*f(a + i*h)

else:
integral += 2*f(a + i*h)

return h/3*integral

>>> def f(x):
return 1/x

With n set to 4, we obtain 11
10 as in Examples 128 and 131:

>>> simpson_rule(f, 1, 3, 4)

1.0999999999999999

Our approximations (here, n= 10 and 100) quickly approach the true value:

>>> [simpson_rule(f, 1, 3, 10**n) for n in range(1,3)]

[1.0986605986605984, 1.0986122939305363]

Indeed, the following convincingly illustrates that the error in Simpson's rule is O(h4).
>>> from math import log

>>> [simpson_rule(f, 1, 3, 10**n) - log(3) for n in range(1,6)]

[4.830999248861545e-05, 5.262426494567762e-09, 5.282441151166495e-13, -
1.5543122344752192e-15, -7.105427357601002e-15]

Example 133. Python Various integration methods are already implemented in scipy.

>>> from scipy import integrate

For instance, the following is a way to use Simpson's rule with n=4 (so that 5 points are used).
The result matches the 11

10 that we computed ourselves.

>>> def f(x):
return 1/x

>>> xvalues = [1+1/2*i for i in range(5)]

>>> yvalues = [f(x) for x in xvalues]

>>> integrate.simps(yvalues, xvalues)

1.0999999999999999

On the other hand, the following is a convenient way of �general purpose integration�, where we
only need to specify the end points:

>>> integrate.quad(f, 1, 3)

(1.0986122886681096, 7.555511459798467e-14)

The second part of the result is an estimate for the absolute error.
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