
Notes for Lecture 18 Wed, 11/1/2023

The errors in numerical differentiation

In practice, we always get two kinds of errors: the theoretical error as well as a rounding error
(due to the fact that we have to round all involved quantities to, say, double precision). In the
past, we have been able to mostly ignore the rounding error. However, we cannot afford to do
so in the case of numerical differentiation. The reason for the trouble is that our finite difference
approximations always subtract nearly equal quantities (that's in the nature of differentiation!)
which can lead to a devastating loss of precision.
Comment. The theoretical error is often also called truncation error. Here, truncation is meant in the sense
of, for instance, having a function f(x) and truncating its Taylor series to get an approximation of f(x).

Example 119. Analyze the overall error in using the approximation f 0(x)� 1

h
[f(x+h)¡ f(x)].

Solution. As we worked out in Example 111, the theoretical error is 1

h
[f(x+h)¡ f(x)] = f 0(x)+

h

2
f 00(�).

In practice, all quantities including f(x+h) and f(x) are slightly rounded and only accurate to within some "
(the machine precision). In the sequel, we assume double precision, in which case "� 2¡52� 2.2 � 10¡16. Our
approximation therefore is ("1 and "2 are the rounding errors for f(x+h) and f(x) respectively) roughly:

1
h
[(f(x+h)+ "1)¡ (f(x)+ "2)] =

1
h
[f(x)¡ f(x¡h)]+ "1¡ "2

h

= f 0(x)+
1
2
f 00(�)h

theoretical error

+
"1¡ "2
h

rounding error

Writing M =
1

2
jf 00(�)j (note that M � 1

2
jf 00(x)j if h is small) and observing that

������"1¡ "2
h

������6 2"

h
, we see that

the overall error is bounded by

E(h)=Mh+
2"
h
:

Plot the function E(h) to see that this bound becomes bad as h gets too small (that's because of the rounding
error 2"/h). In particular, we can see that there will be a �best� choice for h which minimizes this bound for
the error. To find this best value h?, we compute E 0(h)=M ¡ 2"

h2
=0 and solve for h. We find

h�=
2"
M

r
�M¡1/2 � 2.1 � 10¡8:

The corresponding bound for the error is E(h�)�Mh�+
2"

h�
�M1/2 � 4.2 � 10¡8.

Comment. Note that our estimates match the values we observed in Example 118 fairly well. In that example,
we had f(x)=2x so that f 00(x)= (ln2)2 2x and, therefore, M =

1

2
jf 00(�)j� 1

2
jf 00(1)j=(ln2)2 . In particular,

M1/2� ln2� 0.6931 and E(h�)�M1/2 � 4.2 � 10¡8� 2.9 � 10¡8.
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Example 120. Analyze the overall error in approximating f 0(x)� 1

2h
[f(x+h)¡ f(x¡h)].

Solution. The theoretical error is 1

2h
[f(x+h)¡ f(x¡h)] = f 0(x)+

h2

6
f 000(x)+O(h3) (see Example 112).

In practice, proceeding as in the previous example, our approximation is roughly:

1
2h
[(f(x+h)+ "1)¡ (f(x¡h)+ "2)] =

1
2h
[f(x+h)¡ f(x¡h)] + "1¡ "2

2h

= f 0(x)+
1
6
f 000(�)h2

theoretical error

+
"1¡ "2
2h

rounding error

Note that
������"1¡ "2

2h

������6 "

h
. Writing M =

1

6
jf 000(�)j, the overall error is bounded by

E(h)=Mh2+
"
h
:

Again, plotting the function E(h) we see that this bound becomes bad as h gets too small and that there is a
�best� value h� which minimizes this bound for the error. We compute E 0(h)= 2Mh¡ "

h2
=0 and solve for h.

We find

h�=
"
2M

3

r
�M¡1/3 � 4.8 � 10¡6:

The corresponding bound for the error is E(h�)�M (h�)2+
"

h�
�M1/3 � 6.9 � 10¡11.

Comment. Again, our estimates match the values we observed in Example 118 rather well.

Richardson extrapolation

Suppose that A(h) is an approximation of a quantity A� of order n. Our goal is to construct an
approximation of A� of higher order (by combining approximations A(h) for different h).
If A(h) approximates A� to order n, then we often have A(h) =A�+Chn+O(hn+1) for some constant C.
This is true, for instance, for all of our numerical differentiation examples.
In that case, we have A(2h)=A�+C(2h)n+O(hn+1) as well as 2nA(h)= 2nA�+C(2h)n+O(hn+1).

Thus the difference is 2nA(h)¡A(2h)= (2n¡ 1)A�+O(hn+1).
Dividing both sides by 2n¡ 1, we therefore get an approximation of order higher than n.

(Richardson extrapolation) Starting with an approximation A(h) of a quantity A� of order n,
its Richardson extrapolation is the approximation

R(h) := 2nA(h)¡A(2h)
2n¡ 1 :

As we showed above, it typically is an approximation of higher order.

More generally, we get a Richardson extrapolation R�(h)=
�nA(h)¡A(�h)

�n¡ 1 for any choice of �>0 (the choice
�=2 is common but not mathematically special).

Comment. Note that, based on the values at h and 2h, we are trying to get our hands on A� which is the value
at 0. Because 0 is outside of the interval [h; 2h], this is an extrapolation.

Armin Straub
straub@southalabama.edu

74



Example 121. Suppose that A
�
1

2

�
= 3

8
and A

�
1

3

�
= 5

12 are approximations of order 3 of some

quantity A�. What is the approximation we obtain from using Richardson extrapolation?

Solution. Since A(h) is an approximation of order 3, we expect A(h)�A�+Ch3 for some constant C.

Correspondingly, A
�
1

2

�
�A�+ 1

8
C and A

�
1

3

�
�A�+ 1

27
C.

Hence, 27A
�
1

3

�
¡ 8A

�
1

2

�
� (27¡ 8)A�= 19A�. To get an approximation of A�, we need to divide by 19.

The Richardson extrapolation is 27
19
A
�
1

3

�
¡ 8

19
A
�
1

2

�
=

27
19

5

12
¡ 8

19
3

8
=

33
76
.

Comment. Note that we did is equivalent to using the formula R�(h)=
�nA(h)¡A(�h)

�n¡ 1 with h= 1

3
and �= 3

2
.

Comment. The numbers above are not random. Instead, A(h) = 1

2
¡ h

4
which is an order 3 approximation of

f(0)=
1

2
for f(x)= 1

1+ ex
=
1

2
¡ x

4
+

x3

48
+O(x5). Indeed, 33

76
�0.434 is slightly better than A

�
1

2

�
and A

�
1

3

�
.

Example 122. Apply Richardson extrapolation to f 0(x)� 1

h
[f(x+h)¡ f(x)].

Solution. We have seen in Example 111 that the approximation A(h)= 1

h
[f(x+h)¡ f(x)] is of order 1. Hence,

2A(h)¡A(2h)
2¡ 1 =

2
h
[f(x+h)¡ f(x)]¡ 1

2h
[f(x+2h)¡ f(x)]

=
1
2h
[¡f(x+2h)+ 4f(x+h)¡ 3f(x)]

is an approximation of higher order (we expect it to be of order 2).
Indeed, this approximation of f 0(x) is the same as what we obtained in Example 116 when applying polynomial
interpolation to f(x), f(x+h), f(x+2h). As observed there, the error is ¡1

3
f 000(x)h2+O(h3) showing that

this is indeed an approximation of order 2.

Example 123. Apply Richardson extrapolation to f 0(x)� 1

2h
[f(x+h)¡ f(x¡h)].

Solution. We have seen in Example 112 that the approximation A(h)= 1

2h
[f(x+h)¡ f(x¡h)] is of order 2.

Hence,

22A(h)¡A(2h)
22¡ 1 =

2
3h
[f(x+h)¡ f(x¡h)]¡ 1

12h
[f(x+2h)¡ f(x¡ 2h)]

=
1

12h
[¡f(x+2h)+ 8f(x+h)¡ 8f(x¡h)+ f(x¡ 2h)]

is an approximation of f 0(x) of higher order. With some more work (do it!), we find that the error is
¡ 1

30 f
(5)(x)h4+O(h6) so that this is an approximation of order 4.

Comment. Note that the above approximations don't change when h is replaced by ¡h (note the factor of
1/h). In other words, the approximations are even functions in h. Consequently, their Taylor expansion in h will
only have even powers of h. That's the reason why the order of the Richardson extrapolation is 4 rather than
order 3 which is what one would otherwise expect when extrapolating an order 2 formula.

Example 124. Apply Richardson extrapolation to f 00(x)� 1

h2
[f(x+h)¡ 2f(x)+ f(x¡h)].

Solution. We have seen in Example 115 that the approximation A(h)= 1

h2
[f(x+h)¡ 2f(x)+ f(x¡h)] is of

order 2. Hence,

22A(h)¡A(2h)
22¡ 1 =

1

12h2
[¡f(x+2h)+ 16f(x+h)¡ 30f(x)+ 16f(x¡h)¡ f(x¡ 2h)]

is an approximation of f 00(x) of higher order. With some more work, we find that the error is ¡ 1

90
f (6)(x)h4+

O(h6) so that this is an approximation of order 4.
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In the previous example, we combined A(h) and A(2h) to obtain an approximation of higher order.
There is nothing special about 2h. We can likewise combine A(h1) and A(h2) for any h1, h2.

Example 125. (homework) A(h)= 1

h2
[f(x+h)¡2f(x)+ f(x¡h)] is an order 2 approximation

of f 00(x). Apply Richardson extrapolation to A(h) and A
�
3

2
h
�
to obtain an approximation of

f 00(x) of higher order.
Solution. Since A(h) is an approximation of order 2, we expect A(h) � A� + Ch2 for some constant C.

Correspondingly, A
�
3

2
h
�
�A�+ 9

4
Ch2. Hence, 9

4
A(h)¡A

�
3

2
h
�
�

�
9

4
¡ 1

�
A�=

5

4
A�.

The Richardson extrapolation of A(h) and A
�
3

2
h
�
therefore is:

9

4
A(h)¡A

�
3

2
h
�

5

4

=
1

45h2
h
¡16f

�
x+

3

2
h
�
+ 81f(x+h)¡ 130f(x)+ 81f(x¡h)¡ 16f

�
x¡ 3

2
h
�i

This is an approximation of f 00(x) of higher order. With some more work, we find that the error is
¡ 1

160
f (6)(x)h4+O(h6) so that this is an approximation of order 4.

Example 126. Python Let us now repeat Example 118 with the formula

f 0(x)� 1
12h

[¡f(x+2h)+ 8f(x+h)¡ 8f(x¡h)+ f(x¡ 2h)]

that we obtained in Example 123.

>>> def central_difference_richardson(f, x, h):
return (-f(x+2*h)+8*f(x+h)-8*f(x-h)+f(x-2*h))/(12*h)

Let us again approximate f 0(1)= 2ln(2)� 1.386 for f(x)= 2x at x=1.
>>> [central_difference_richardson(f, 1, 10**-n) for n in range(5)]

[1.375, 1.3862932938249581, 1.3862943610132332, 1.3862943611198109, 1.3862943611187004]

Does the error behave as expected?

>>> [central_difference_richardson(f, 1, 10**-n) - 2*log(2) for n in range(6)]

[-0.011294361119890572, -1.0672949324330716e-06, -1.0665734961889939e-10, -
7.971401316808624e-14, -1.1901590823981678e-12, 1.5093037930569153e-11]

We noted in Example 123 that the approximation is of order 4. Indeed, we can see how the error
decreases roughly by 1/104 initially, as expected.
Moreover, we are able to obtain a much better numerical estimate compared to Example 118:
this time, our best approximation has error 7.97 � 10¡14, which is decently close to the machine
precision of " � 2¡52 � 2.2 � 10¡16. This is because the effect of rounding errors becomes
devastating as h becomes very small. Using a high-order approximation, we are often able to avoid
having to work with very small h.
Indeed, note how we got the best approximation with h=10¡3 (whereas we previously needed to a much smaller
h for the best approximations).
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