
Notes for Lecture 15 Tue, 10/13/2020

Example 128.

(a) Show that 7 is a primitive root modulo 26.

(b) Using the first part, make a complete list of all primitive roots modulo 26.

Solution.

(a) We need to show that 7 has order �(26)= 12.
The order of 7 (or any invertible residue) must divide �(26)=12. Hence, the only possibilities for orders
are 1; 2; 3; 4; 6; 12. The fact that 74� (−3)2� 9�/ 1 (mod26) and 76� (−3)3�−1�/ 1 (mod26) is
enough (why?!) to conclude that the order of 7 must be 12.

(b) Since 7 is a primitive root, all other invertible residues are of the form 7a.

Recall that 7a has order 12
gcd (12; a) . Thus, 7

a is a primitive root if and only if gcd (12; a) = 1.

Therefore, a list of all primitive roots modulo 26 is: 7; 75; 77; 711

[These are �(�(26)) = �(12) = 4 many primitive roots.]

The same logic applies whenever there is at least one primitive root:

Theorem 129. (number of primitive roots) Suppose there is a primitive root modulo n. Then
there are �(�(n)) primitive roots modulo n.

Proof. Let x be a primitive root. It has order �(n). All other invertible residues are of the form xa.

Recall that xa has order �(n)

gcd (�(n); a) . This is �(n) if and only if gcd (�(n); a) = 1. There are �(�(n)) values

a among 1; 2; :::; �(n), which are coprime to �(n).
In conclusion, there are �(�(n)) primitive roots modulo n. �

Comment. Recall that, for instance, there is no primitive root modulo 8. That's why we needed the assumption
that there should be a primitive root modulo n (which is the case if and only if n is of the form 1; 2; 4; pk; 2pk

for some odd prime p).

Corollary 130. There are �(�(p))= �(p− 1) primitive roots modulo a prime p.

Example 131. Let p be an odd prime. Show that at most half of the invertible residues modulo
p are primitive roots.

Solution. In other words, we need to show that �(p− 1)
p− 1 6 1

2
. Let p1; p2; ::: be the primes, in increasing order,

dividing p− 1. Since p=/ 2, p− 1 is divisible by 2, so that p1=2.

Then, �(p− 1)= (p− 1)
�
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Consequently, �(p− 1)
p− 1 6

1
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(p− 1)
p− 1 =

1

2
, as claimed.

In fact. Note that
�
1− 1

p2

�
<1 if there is a second prime. Our proof therefore actually shows that �(p− 1)

p− 1 =
1

2

if and only if p−1 is of the form 2n (i.e. the only prime dividing p−1 is 2). Equivalently, if p is of the form 2n+1.
Comment. Primes of the form 2n+1 are known as Fermat primes. It can be shown that such a prime is, in fact,
necessarily of the form Fk=2

2k+1. The first five numbers F0=3, F1=5, F2= 17, F3=257, F4= 65537 are
prime, and Fermat conjectured that Fk is prime for all k>0. This was proven wrong by Euler who demonstrated
that F5= 232 + 1 = 641 � 6700417 (this was way before the time, we could ask a computer to factor not-too-
large numbers). To this day, it is not known whether any further Fermat primes exist.
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Example 132. Recall that, for every prime p, primitive roots exist. The total number of primitive
roots is �(�(p))=�(p−1). The following computations in Sage indicate that typically a �decent�
proportion (25-50%) of all invertible residues are primitive roots. The exact proportion is, of course
�(p− 1)
p− 1 but to say more about the magnitude, we need the factorization of p− 1.

Advanced comment. However, the number of primitive roots can (though this is very rare) be an arbitrarily
small proportion. In fact, a result of Kátai shows that, for each x 2 [0; 1], there is a proportion P (x) of primes
with �(p− 1)

p− 1 6 x, and that P (x) is a strictly increasing continuous function with P (0)=0 and P (1/2)=1.

Sage] prime_range(30)

[2; 3; 5; 7; 11; 13; 17;19; 23; 29]

Sage] euler_phi(26)

12

Sage] [p^2 for p in prime_range(30)]

[4; 9; 25;49; 121;169; 289; 361; 529;841]

Sage] [euler_phi(p-1)/(p-1) for p in prime_range(30)]�
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2
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�
Sage] list_plot([euler_phi(p-1)/(p-1) for p in prime_range(3,10000)])
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Notes for Lecture 16 Thu, 10/15/2020

14 Applying the CRT to computing powers
If we know the factorization of the modulus, the CRT speeds up the computation of powers:

Example 133. Compute 329 (mod 77) using the Chinese remainder theorem.
Solution. We determine x=329 both modulo 7 and 11:

� 329� 35� 3 � 4�−2 (mod7) [Here, we used 29� 5 (mod �(7)) and 32� 2, 34� 4 (mod7).]

� 329� 3−1� 4 (mod11) [Here, we proceeded unusually and used 29�−1 (mod�(11)).]

Therefore, x�−2 (mod7) and x� 4 (mod11).
Using the Chinese remainder theorem, x=−2 � 11 � 11mod7

−1

2

+4 � 7 � 7mod11
−1

−3

�−128� 26 (mod77).

Comment. Alternatively, we can proceed modulo n=77 directly and use binary exponentiation. However, if we
already know the factorization of n (that's a big �if� for large n), then applying the Chinese remainder theorem
(followed by binary exponentiation) is a little faster.

Example 134. (review) Compute 7100 (mod60).
Solution. �(60) = �(22)�(3)�(5) = 2 � 2 � 4 = 16. Since gcd (7; 60) = 1, we obtain that 716 � 1 (mod60) by
Euler's theorem. Since 100� 4 (mod16), we have 7100� 74 (mod60).
It remains to notice that 72= 49�−11 and hence 74� (−11)2= 121� 1 (mod60). So, 7100� 1 (mod60).

Comment. The next example shows that we actually have a4� 1 (mod60) for all integers a coprime to 60.

Euler's theorem doesn't necessarily provide an optimal exponent. For instance:

Example 135. Show that a4� 1 (mod60) for all integers a coprime to 60.
Note. Since �(60)= �(22)�(3)�(5)= 2 � 2 � 4= 16, Euler's theorem shows that a16� 1 (mod60).

Proof. By the Chinese remainder theorem, a4� 1 (mod60) is equivalent to

a4� 1 (mod4); a4� 1 (mod3); a4� 1 (mod5):

All three of these congruences are true:

� a4� 1 (mod5) is true by Fermat's little theorem.

� a4� 1 (mod3) is true, because a2� 1 (mod3) by Fermat's little theorem.

� a4� 1 (mod4) is true, because a2� 1 (mod4) by Euler's theorem (�(4)= 2).

(Note that a is coprime to 60 if and only if a is coprime to each of 4, 3, 5.) �
A brute-force verification in Sage. The following computation also proves the claim. Even if you have never
coded yourself, you can surely figure out what the following code is doing:

Sage] [1..59]

[1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32; 33;
34; 35; 36; 37;38; 39; 40; 41;42; 43; 44; 45;46; 47; 48; 49;50; 51; 52; 53;54; 55; 56; 57;58; 59]

Sage] [ x for x in [1..59] if gcd(x,60)==1 ]

[1; 7; 11;13; 17; 19; 23;29; 31; 37; 41;43; 47; 49; 53;59]

Sage] [ power_mod(x,4,60) for x in [1..59] if gcd(x,60)==1 ]

[1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1]
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Proceeding as in Example 135, we obtain the following result:

Theorem 136. (strengthening of Euler's theorem) Suppose n has the prime factorization
n= p1

r1p2
r2���pmrm. If gcd (a; n)= 1, then

a�(n)� 1 (modn) where �(n)= lcm (�(p1
r1); �(p2

r2); :::; �(pm
rm)):

Advanced. The exponent �(n) in this result is best possible unless n is divisible by 8; see, for instance:
https://en.wikipedia.org/wiki/Carmichael_function

The only improvement that can be made is that, in the computation of �(n), �(2r)may be replaced with 1

2
�(2r)

if r> 3. This is known as Carmichael's theorem.

Example 137. Since 60=22 � 3 � 5, we have �(60)= lcm (�(22); �(3); �(5))= lcm (2; 2; 4)=4.
By the theorem, a4� 1 (mod60) whenever gcd (a; 60)= 1, as we had observed in Example 135.

Example 138. Based on Euler's theorem and the Chinese remainder theorem, find the smallest
exponent k such that ak� 1 (mod 42) for all integers a coprime to 42.
Solution. Since 42=2 � 3 � 7, the smallest such exponent is �(42)= lcm (�(2); �(3); �(7))= lcm (1; 2; 6)=6.

Note. Since �(42)=�(2)�(3)�(7)=1 �2 �6=12, this improves the exponent in Euler's theorem by a factor of 2.

Note. In this case, we can easily see that the exponent 6 cannot be further decreased. For instance, take a
residue that is a primitive root modulo 7; its order modulo 42 must be at least 6 as well.

Example 139. Based on Euler's theorem and the Chinese remainder theorem, find the smallest
exponent k> 1 such that ak� 1 (mod675) for all integers a coprime to 675.
Solution. Since 675=33 � 52, the smallest such exponent is �(675)= lcm (�(33); �(52))= lcm(18;20)= 180.

Note. Since �(675)=�(33)�(52)=18 �20=360, this improves the exponent in Euler's theorem by a factor of 2.

The following is a variation of the same idea we used in Example 135.

Lemma 140. Suppose that m and n are coprime. If x (mod n) has multiplicative order r and
x (modm) has multiplicative order s, then x (modmn) has multiplicative order lcm (r; s).

Proof. Suppose that xk�1 (modmn). Equivalently, by the CRT, xk� 1 (modm) as well as xk� 1 (modn).
By Lemma 126, this is further equivalent to r jk and sjk. Clearly, the smallest such k is k= lcm (r; s). �

Example 141. Determine the order of 2 (mod77) using the Chinese remainder theorem.

Solution. We first determine the orders of 2 (mod7) and 2 (mod11).

� modulo 7 (since �(7)=6, the possible orders are 2; 3; 6): 22� 4, 23� 4 � 2� 1.
Thus, 2 (mod7) has order 3.

� modulo 11 (since �(11) = 10, the possible orders are 2; 5; 10): 22� 4, 25� 24 � 2� 5 � 2�−1�/ 1.
Thus, 2 (mod11) has order 10.

Taken together, it follows from the lemma that 2 (mod77) has order lcm (3; 10)= 30.

Note. Can you see, from these considerations, why there cannot exist a primitive root modulo 77?
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Notes for Lecture 17 Tue, 10/20/2020

Example 142. Fermat's little theorem can be stated in the slightly stronger form:

n is a prime () an−1� 1 (modn) for all a2f1; 2; :::; n− 1g

Why? Fermat's little theorem covers the �=)� part. The �(=� part is a direct consequence of the fact that, if
n is composite with divisor d, then dn−1�/ 1 (modn). (Why?!)
Review. In the second part, we used that the contrapositive of A=)B is the logically equivalent statement
:B=):A.

15 Primality testing
Recall that it is extremely difficult to factor large integers (this is the starting point for many
cryptosystems). Surprisingly, it is much simpler to tell if a number is prime.

Example 143. The following is the number mentioned earlier, for which RSA Laboratories, until
2007, offered $100,000 to the first one to factorize it. To this day, nobody has been able to do so.
Has the thought crossed your mind that the challengers might be tricking everybody by choosing M to be a
huge prime that cannot be factored further? Well, we'll talk more about primality testing soon. But we can
actually quickly convince ourselves thatM cannot be a prime. If M was prime then, by Fermat's little theorem,
2M−1 � 1 (modM). Below, we compute 2M−1 (modM) and find that 2M−1 �/ 1 (modM). This proves
that M is not a prime. It doesn't bring us any closer to factoring it though.
Comment. Ponder this for a while. We can tell that a number is composite without finding its factors. Both
sides to this story (first, being able to efficiently tell whether a number is prime, and second, not being able to
factor large numbers) are of vital importance to modern cryptography.

Sage] rsa = Integer("135066410865995223349603216278805969938881475605667027524485143851\
526510604859533833940287150571909441798207282164471551373680419703\
964191743046496589274256239341020864383202110372958725762358509643\
110564073501508187510676594629205563685529475213500852879416377328\
533906109750544334999811150056977236890927563")

Sage] power_mod(2, rsa-1, rsa)

12093909443203361586765059535295699686754009846358895123890280836755673393220205933853\
34853414711666284196812410728851237390407107713940535284883571049840919300313784787895\
22602961512328487951379812740630047269392550033149751910347995109663412317772521248297\
950196643140069546889855131459759160570963857373851

Comment. Just for giggles, let us emphasize once more the need to compute 2N−1 (modN) without actually
computing 2N−1. Take, for instance, the 1024 bit RSA challenge number N = 135:::563 in this example. The
number 2N−1 itself has N − 1� 21024� 10308.3 binary digits. It is often quoted that the number of particles
in the visible universe is estimated to be between 1080 and 10100. Whatever these estimates are worth, our
number has WAY more digits (!) than that. Good luck writing it out! [Of course, the binary digits are a single
1 followed by all zeros. However, we need to further compute with that!]
Comment. There is nothing special about 2 in this discussion. You could just as well use, say, 3.

Fermat primality test
Input: number n and parameter k indicating the number of tests to run
Output: �not prime� or �likely prime�
Algorithm:

Repeat k times:
Pick a random number a from f2; 3; :::; n− 2g.
If an−1�/ 1 (modn), then stop and output �not prime�.

Output �likely prime�.
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If an−1� 1 (modn) although n is composite, then a is called a Fermat liar modulo n.

On the other hand, if an−1�/ 1 (modn), then n is composite and a is called a Fermat witness modulo n.
Flaw. There exist certain composite numbers n (see Definition 145) for which every a is a Fermat liar (or reveals
a factor of n). For this reason, the Fermat primality test should not be used as a general test for primality. That
being said, for very large random numbers, it is exceedingly unlikely to meet one of these troublesome numbers,
and so the Fermat test is indeed used for the purpose of randomly generating huge primes (for instance in PGP).
In fact, in that case, we can even always choose a=2 and k=1 with virtual certainty of not messing up.
There do exist extensions of the Fermat primality test which solve these issues.
[For instance, Miller-Rabin, which checks whether an−1 � 1 (mod n) but also checks whether values like
a(n−1)/2 are congruent to �1.]
Advanced comment. If n is composite but not an absolute pseudoprime (see Definition 145), then at least half
of the values for a satisfy an−1�/ 1 (modn) and so reveal that n is not a prime. This is more of a theoretical
result: for most large composite n, almost every a (not just half) will be a Fermat witness.

Example 144. Suppose we want to determine whether n= 221 is a prime. Simulate the Fermat
primality test for the choices a= 38 and a= 24.

Solution.

� First, maybe we pick a= 38 randomly from f2; 3; :::; 219g.
We then calculate that 38220� 1 (mod221). So far, 221 is behaving like a prime.

� Next, we might pick a= 24 randomly from f2; 3; :::; 219g.
We then calculate that 24220� 81�/ 1 (mod221). We stop and conclude that 221 is not a prime.

Important comment. We have done so without finding a factor of n. (To wit, 221= 13 � 17.)
Comment. Since 38 was giving us a false impression regarding the primality of n, it is called a Fermat liar
modulo 221. Similarly, we say that 221 is a pseudoprime to the base 38.
On the other hand, we say that 24 was a Fermat witness modulo 221.
Comment. In this example, we were actually unlucky that our first �random� pick was a Fermat liar: only 14 of
the 218 numbers (about 6.4%) are liars. As indicated above, for most large composite numbers, the proportion
of liars will be exceedingly small.

Somewhat suprisingly, there exist composite numbers n with the following disturbing property:
every residue a is a Fermat liar or gcd (a; n)> 1.

This means that the Fermat primality test is unable to distinguish n from a prime, unless the randomly picked
number a happens to reveal a factor (namely, gcd(a;n)) of n (which is exceedingly unlikely for large numbers).
[Recall that, for large numbers, we do not know how to find factors even if that was our primary goal.]

Such numbers are called absolute pseudoprimes:

Definition 145. A composite positive integer n is an absolute pseudoprime (or Carmichael
number) if an−1� 1 (modn) holds for each integer a with gcd (a; n)= 1.

The first few are 561; 1105; 1729; 2465; ::: (it was only shown in 1994 that there are infinitely many of them).
These are very rare, however: there are 43 absolute pseudoprimes less than 106. (Versus 78; 498 primes.)
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Example 146. Show that 561 is an absolute pseudoprime.
Solution. (using the strengthening of Euler's theorem) We need to show that a560 � 1 (mod 561) for all
invertible residues a modulo 561. Since 561= 3 � 11 � 17 and lcm (�(3); �(11); �(17)) = lcm (2; 10; 16) = 80,
it follows from Theorem 136 that a80 � 1 (mod 561) for all invertible residues a modulo 561. Since 560 is a
multiple of 80, it follows that a560� 1 (mod561).

Solution. (direct) We need to show that a560� 1 (mod561) for all invertible residues a modulo 561.
Since 561=3 � 11 � 17, a560� 1 (mod561) is eqivalent to a560� 1 (mod p) for each of p=3; 11;17.
By Fermat's little theorem, we have a2� 1 (mod3), a10� 1 (mod11), a16� 1 (mod17). Since 2;10;16 each
divide 560, it follows that indeed a560� 1 (mod p) for p=3; 11; 17.

Comment. Korselt's criterion (1899) states that what we just observed in fact characterizes absolute pseudo-
primes. Namely, a composite number n is an absolute pseudoprime if and only if n is squarefree, and for all
primes p dividing n, we also have p− 1jn− 1.
Comment. Our argument above shows that, in fact, a80�1 (mod561) for all invertible residues a modulo 561.
Note

Theorem 147. (Korselt's Criterion) A composite positive integer n is an absolute pseudoprime
if and only if n is squarefree and (p− 1)j(n− 1) for each prime divisor p of n.

Proof. Here, we will only consider the �if� part (the �only if� part is also not hard to show but the typical proof
requires a little more insight into primitive roots than we currently have).
To that end, assume that n is squarefree and that (p− 1)j(n− 1) for each prime divisor p of n. Let a be any
integer with gcd (a; n)= 1. We will show that an−1� 1 (modn).
n being squarefree means that its prime factorization is of the form n = p1�p2���pd for distinct primes pi
(this is equivalent to saying that there is no integer m > 1 such that m2jn). By Fermat's little theorem
api−1� 1 (mod pi) and, since (pi−1)j(n−1), we have an−1�1 (modpi) for all pi. It therefore follows from
the Chinese remainder theorem that an−1� 1 (modn). �
Comment. Modulo a prime p, Fermat's little theorem implies that ap�a (mod p) for each integer a. (Why?!)
It therefore follows from the above argument that, for an absolute pseudoprime n, we have an� a (modn) for
each integer a (and this property characterizes absolute pseudoprimes).

Example 148. Using Sage, determine all numbers n up to 5000, for which 2 is a Fermat liar.

Sage] def is_fermat_liar(x, n):
return not is_prime(n) and power_mod(x, n-1, n) == 1

Sage] [ n for n in [1..5000] if is_fermat_liar(2, n) ]

[341;561; 645; 1105; 1387; 1729; 1905; 2047;2465; 2701; 2821; 3277;4033; 4369; 4371;4681]

Even if you have never written any code, you can surely figure out what's going on!
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