
Notes for Lecture 7 Tue, 9/8/2020

Example 61. Every integer x is congruent to one of 0; 1; 2; 3; 4 modulo 5.

We therefore say that 0; 1; 2; 3; 4 form a complete set of residues modulo 5.

Another natural complete set of residues modulo 5 is: 0;�1;�2
A not so natural complete set of residues modulo 5 is: −5; 2; 9;−2; 6
A possibly natural complete set of residues modulo 5 is: 0; 3; 32=9; 33= 27; 34= 81
[We will talk more about this last case. Because we obtained a complete set of residues this way, we will say
that �3 is a multiplicative generator modulo 5�.]

Review. a is invertible modulo n if and only if gcd (a; n) = 1. We can compute a−1 using the
Euclidean algorithm.

Example 62. (review) Determine 16−1 (mod25).
Solution. Using the Euclidean algorithm, in Example 15, we found that 11 �16− 7 � 25=1.
Reducing that modulo 25, we get 11 � 16� 1 (mod25).
Hence, 16−1� 11 (mod25).

Example 63. List all invertible residues modulo 10.
Solution. 1; 3; 7; 9 (or, possibly, more compact and transparent: �1;�3)
[We start with all residues 0; 1; 2; :::; 9 and only keep those which are coprime to 10.]

5.2 Linear congruences

Let us consider the linear congruence ax� b (modn) where we are looking for solutions x.

We will regard solutions x1; x2 as the same if x1�x2 (modn).

Example 64. (review) Solve 16x� 4 (mod25).
Solution. We first find 16−1 (mod25). Bézout's identity: −7 � 25+ 11 � 16.
Reducing this modulo 25, we get 11 � 16� 1 (mod25).
Hence, 16−1� 11 (mod25).
It follows that 16x� 4 (mod25) has the (unique) solution x� 16−1 � 4� 11 � 4� 19 (mod25).

Example 65.

(a) 3x� 2 (mod7) has the solution x=3. We regard x= 10 or x= 17 as the same solution.
We therefore write that x� 3 (mod 7) is the unique solution to the equation.

(b) 3x� 2 (mod 9) has no solutions x.

Why? Reducing 3x=2+9m modulo 3, we get 0� 2 (mod3) which is a contradiction.
Just to make sure! Why does the same argument not apply to 3x� 2 (mod7)?

(c) 6x� 3 (mod 9) has solutions x=2, x=5, x=8.

6x=3+9m is equivalent to 2x=1+3m or 2x� 1 (mod3). Which has solution x� 2 (mod3).
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Theorem 66. Consider the linear congruence ax� b (modn). Let d= gcd (a; n).

(a) The linear congruence has a solution if and only if djb.

(b) If d=1, then there is a unique solution modulo n.

(c) If djb, then it has d different solutions modulo n.

(In fact, it has a unique solution modulo n/d.)

Proof.

(a) Finding x such that ax� b (modn) is equivalent to finding x; y such that ax+ny= b.
The latter is a diophantine equation of the kind we studied earlier. In particular, we know that it has a
solution if and only if gcd (a; n) divides b.

(b) If d=1, then a is invertible modulo n. Multiplying the congruence ax� b (modn) with a−1, we obtain
x� a−1b (modn). That's the unique solution.
Alternatively. If d=1, then ax+ny= b has general solution x=x0+ tn, y= y0− ta (where x0; y0 is
some particular solution). But, modulo n, all of these lead to the same solution x�x0 (modn).

(c) If djb, then ax� b (modn) is equivalent to a1x� b1 (modn1) with a1=
a

d
, b1=

b

d
, n1=

n

d
. (Make sure

you see why! Spell out the congruences as equalities.) Since gcd (a1; n1) = 1, we get a unique solution
x modulo n1.
Being congruent to x modulo n1 is the same as being congruent to one of x; x+ n1; :::; x+ (d− 1)n1
modulo n. �

Example 67. Solve the system

7x+3y � 10 (mod16)
2x+5y � 9 (mod16):

Solution. As a first step we solve the system:

7x+3y = 10
2x+5y = 9

However you prefer solving this system (two options below), you will find the unique solution x= 23
29 , y=

43
29 .

To obtain a solution to the congruences modulo 16, all we have to do is to determine 29−1 (mod16) and then
use that to reinterpret the solution we just obtained.
29−1� (−3)−1�5 (mod16). Thus, x=29−1 �23�5 �7�3 (mod16) and y=29−1 �43�5 �11�7 (mod16).
Comment. We should check our answer: 7 � 3+3 � 7= 42� 10 (mod16), 2 � 3+5 � 7= 41� 9 (mod16).
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A naive way to solve 2�2 systems. To solve 7x+3y=10, 2x+5y=9, we can use the second equation to write

x=
9

2
− 5

2
y and substitute that into the first equation: 7

�
9

2
− 5

2
y
�
+3y=10, which simplifies to 63

2
− 29

2
y=10.

This yields y= 43
29
. Using that value in, say, the first equation, we get 7x+3 � 43

29
=10, which results in x= 23

29
.

Solving 2� 2 systems using matrix inverses. The equations 7x+3y= 10, 2x+5y=9 can be expressed as�
7 3
2 5

��
x
y

�
=

�
10
9

�
;

assuming we are familiar with the basic matrix-vector calculus. A solution is then given by�
x
y

�
=

�
7 3
2 5

�−1� 10
9

�
=

1
35− 6

�
5 −3
−2 7

��
10
9

�
=

1
29

�
23
43

�
:

Here, we used that �
a b
c d

�−1
=

1
ad− bc

�
d −b
−c a

�
;

one of the few formulas worth memorizing.
Advanced comment. It follows from the matrix inverse discussion that the system

ax+ by � r (modn)
cx+ dy � s (modn)

has a unique solution modulo n if gcd (ad− bc; n)= 1.

The matrix
�
a b
c d

�
is invertible if and only if ad− bc=/ 0 (that is, ad− bc is invertible).

The matrix
�
a b
c d

�
is invertible modulo n if and only if gcd (ad− bc; n) = 1 (that is, ad− bc is invertible modulo n).

Comment. You can also see Theorem 4.9 and Example 4.11 in our textbook for a direct approach modulo 16.

Example 68. (extra) Solve the system

2x− y � 7 (mod15)
3x+4y � −2 (mod15):

Solution. As a first step we solve the system:

2x− y = 7

3x+4y = −2

You can solve the system any way you like. For instance, using a matrix inverse, we find�
x
y

�
=

�
2 −1
3 4

�−1� 7
−2

�
=

1
11

�
4 1
−3 2

��
7
−2

�
=

1
11

�
26
−25

�
:

To obtain a solution to the congruences modulo 15, we determine that 11−1�−4 (mod15) (you might be able
to see this modular inverse; in any case, practice using the Euclidean algorithm to compute these).
Therefore, x= 11−1 � 26�−4 � 11� 1 (mod15) and y= 11−1 � (−25)�−4 � 5� 10 (mod15).
Check our answer. 2 � 1− 10=−8� 7 (mod15), 3 � 1+4 �10= 43�−2 (mod15).
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Notes for Lecture 8 Thu, 9/10/2020

6 Fermat's little theorem

Example 69. (warmup) What a terrible blunder::: Explain what is wrong!

(incorrect!) 109� 32=9� 2 (mod 7)

Solution. 109= 10 � 10 � ::: �10� 3 � 3 � ::: � 3=39. Hence, 109� 39 (mod7).
However, there is no reason, why we should be allowed to reduce the exponent by 7 (and it is incorrect).
Corrected calculation. 32� 2, 34� 4, 38� 16� 2. Hence, 39=38 � 31� 2 � 3�−1 (mod7).
By the way, this approach of computing powers via exponents that are 2; 4; 8; 16; 32; ::: is called binary
exponentiation. It is crucial for efficiently computing large powers (see below).

Corrected calculation (using Fermat). 36 � 1 (mod 7) just like 30 = 1. Hence, we are allowed to reduce
exponents modulo 6. Consequently, 39� 33�−1 (mod7).

Theorem 70. (Fermat's little theorem) Let p be a prime, and suppose that p - a. Then

ap−1� 1 (mod p):

Proof. The first p− 1 multiples of a, namely

a; 2a; 3a; :::; (p− 1)a;

are all different modulo p. (Why?!!) Clearly, none of them is divisible by p.
Consequently, the values form a complete set of residues with the residue 0 missing. In other words, these values
are congruent (in some order) to the values 1; 2; :::; p− 1 modulo p. Thus,

a � 2a � 3a � ::: � (p− 1)a� 1 � 2 � 3 � ::: � (p− 1) (mod p):

Cancelling the common factors (allowed because p is prime!), we get ap−1� 1 (mod p). �

Remark. The �little� in this theorem's name is to distinguish this result from Fermat's last theorem that xn+ yn=
zn has no integer solutions if n> 2 (only recently proved by Wiles).
Comment. An alternative proof based on induction is given in our book (bottom of page 88).

Example 71. What is 2100 modulo 3? That is, what is the remainder upon division by 3?
Solution. 2�−1 (mod3). Hence, 2100� (−1)100=1 (mod3).
Careful! Once more, it is incorrect to reduce the exponent modulo 3! 100� 1 (mod3) but 2100�/ 21 (mod3).
Comment. However, since we are working modulo a prime, p=3, Fermat's little theorem does allow us to reduce
the exponent modulo p− 1= 2. Indeed, 2100� 20� 1 (mod3).

Example 72. Compute 31003 (mod101).
Solution. Since 101 is a prime, 3100� 1 (mod101) by Fermat's little theorem.
Therefore, 31003=310�100 � 33� 33= 27 (mod101).
Important comment. Note that, because of Fermat's little theorem, we can reduce the exponent modulo 100
when calculating modulo 101. In particular, since 1003� 3 (mod100), we have 31003� 33= 27 (mod101).

7 Binary exponentiation

Example 73. Compute 332 (mod101).
Solution. Fermat's little theorem is not helpful here.
32=9, 34= 81�−20, 38� (−20)2= 400�−4, 316� (−4)2� 16, 332� 162� 54, all modulo 101
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Example 74. Compute 325 (mod101).
Solution. Fermat's little theorem is not helpful here.
Instead, we do what is called binary exponentiation:
32=9, 34= 81�−20, 38� (−20)2= 400�−4, 316� (−4)2� 16, all modulo 101
Since 25= 16+8+1, we have 325=316 � 38 � 31� 16 � (−4) � 3=−192� 10 (mod101).

Every integer n> 0 can be written as a sum of distinct powers of 2 (in a unique way). Therefore
our approach to compute powers always works. It is called binary exponentiation.
Because 25= 1 � 24+ 1 � 23+ 0 � 22+ 0 � 21+ 1 � 20, we will write 25=(11001)2.

Example 75. Compute 40737249 (mod101).
Solution. First, 40737249� 337249 (mod101). Then, using Fermat, 337249� 349 (mod101).
We then use binary exponentiation:
32=9, 34= 81�−20, 38� (−20)2= 400�−4, 316� (−4)2� 16, 332� 162� 54, all modulo 101
Since 49=(110001)2=20+24+25, we have 349=332 � 316 � 31� 54 � 16 � 3� 67 (mod101).

In conclusion, 40737249� 67 (mod101).

Example 76. (extra) Using binary exponentiation, compute 549 (mod105).
Solution. Recall that 49=(110001)2=20+24+25.

51=5, 52= 25, 54= 252= 625�−5, 58� (−5)2= 25, 516� 252�−5, 532� (−5)2= 25
Hence, 549=532 � 516 � 51� 25 � (−5) � 5� 5.

8 Representations of integers in different bases

Example 77. We are commonly using the decimal system of writing numbers:

1234=4 � 100+3 � 101+2 � 102+1 � 103:

10 is called the base, and 1; 2; 3;4 are the digits in base 10. To emphasize that we are using base
10, we will write 1234=(1234)10. Likewise, we write

(1234)b=4 � b0+3 � b1+2 � b2+1 � b3:

In this example, b > 4, because, if b is the base, then the digits have to be in f0; 1; :::; b− 1g.
Important note. If the least significant digit of x in base b is x0, then x� x0 (mod b).

Example 78. Express 25 in base 2.

Solution. We already noticed that 25=16+8+1=1 �24+1 �23+0 �22+0 �21+1 �20. Hence, 25=(11001)2.
Alternatively, here's how we could have determined the digits without prior knowledge:

� 25= 12 � 2+ 1 . Hence, 25=(:::1)2 where ::: are the digits for 12.

� 12=6 � 2+ 0 . Hence, 25= (:::01)2 where ::: are the digits for 6.

� 6=3 � 2+ 0 . Hence, 25=(:::001)2 where ::: are the digits for 3.

� 3=1 � 2+ 1 , with 1 left over. Hence, 25= (11001)2.
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Example 79. Express 49 in base 2.
Solution.

� 49= 24 � 2+ 1 . Hence, 49=(:::1)2 where ::: are the digits for 24.

� 24= 12 � 2+ 0 . Hence, 49=(:::01)2 where ::: are the digits for 12.

� 12=6 � 2+ 0 . Hence, 49= (:::001)2 where ::: are the digits for 6.

� 6=3 � 2+ 0 . Hence, 49=(:::0001)2 where ::: are the digits for 3.

� 3=1 � 2+ 1 , with 1 left over. Hence, 49= (110001)2.

Other bases. What is 49 in base 3? 49=16 � 3+ 1 , 16=5 �3+ 1 , 5=1 �3+ 2 , 1 . Hence, 49=(1211)3.
What is 49 in base 7? 49= (100)7.
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Notes for Lecture 9 Tue, 9/15/2020

Review. Fermat's little theorem, expressing numbers in different bases

Example 80. (review) Express 31 in base 2.
Solution. 31=(11111)2

There is nothing special about the base 10 that we are used to (except that we have 10 fingers).
In fact, since 10 is not a prime, base 10 is not particularly nice mathematically.

Example 81. Add (1210)3 and (1121)3, working only in base 3.

Solution. We add with carries
1 2 1 0

+ 1 1 2 1
1 0 1 0 1

and find that (1210)3+ (1121)3=(10101)3.

For comparison. (1210)3=3+2 �9+27=48, (1121)3=1+2 �3+9+27=43 and (10101)3=1+9+81=91.

Review long multiplication from school! Then notice how it is easiest in base 2:

Example 82. Multiply (110100)2 and (101)2, working only in base 2.

Solution.

1 1 0 1 0 0
� 1 0 1

1 1 0 1 0 0
+ 1 1 0 1 0 0

1 0 0 0 0 0 1 0 0

so that (110100)2 � (101)2= (100000100)2.

For comparison. (110100)2=4+ 16+ 32= 52, (101)2=1+4=5 and (100000100)2=4+ 256= 260.

Example 83. (divisibility by 9) A number n= (amam−1���a0)10 is divisible by 9 if and only if
the sum of its decimal digits am+ am−1+ :::+ a0 is divisible by 9.
Why? Note that 10r� 1r� 1 (mod9) for each integer r> 0.
In particular, n= am �10m+ am−1 � 10m−1+ :::+ a1 � 101+ a0� am+ am−1+ :::+ a1+ a0 (mod9).
For instance. 1234567 is not divisible by 9 because 1+2+3+4+5+6+7=28 is not divisible by 9. In fact,
1234567� 28� 10� 1 (mod9).

Example 84. (divisibility by 11) A number n=(amam−1���a0)10 is divisible by 11 if and only
if the alternating sum of its decimal digits (−1)mam+(−1)m−1am−1+ :::+a0 is divisible by 11.
Why? Note that 10r� (−1)r (mod11) for each integer r> 0. In particular,

n= am � 10m+ am−1 � 10m−1+ :::+ a1 � 101+ a0� (−1)mam+ (−1)m−1am−1+ :::− a1+ a0 (mod11).
For instance. 123456 is not divisible by 11 because 6− 5 + 4− 3 + 2− 1 = 3 is not divisible by 11. In fact,
123456� 3 (mod11).

Example 85. Bases 2, 8 and 16 (binary, octal and hexadecimal) are commonly used in computer
applications.
For instance, in JavaScript or Python, 0b::: means (:::)2, 0o::: means (:::)8, and 0x::: means (:::)16.
The digits 0; 1; :::; 15 in hexadecimal are typically written as 0; 1; :::; 9; A;B;C;D;E; F .
Problem. Which number is 0xD1?
Solution. 0xD1=13 � 16+1= 209.
The South Alabama Jaguar NCAA team color code is 0xD11241. That means RGB(209; 18; 65), where each
value (ranging from 0 to 255) quantifies the amount of red (R), green (G) and blue (B).
For instance, 0x000000 is black, and 0xFF0000 is red, and 0xFFFFFF is white.
We can thus see that the color 0xD11241 is close to a red (though not a pure one).
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Example 86. How can we can compute the inverse of a modulo p via Fermat's little theorem?
Solution. By Fermat's little theorem, ap−1� 1 (mod p).

Write ap−1= a �ap−2 to see that it follows that a−1� ap−2 (mod p).

For instance. Suppose we would like to compute 2−1 (mod7).
Since 26� 1 (mod7), by little Fermat, we conclude that 2−1� 25= 32� 4 (mod7).
Comment. A similar approach (based on Euler's theorem, which we will discuss shortly) would work for computing
inverses modulo composite numbers n. However, in that case, we essentially need to know the prime factorization
of n, which is impractical for large n.

Example 87. (advanced) We can also express negative (or, even, rational) numbers in different
bases. The following is a glimpse at p-adic analysis.

(a) (again; review) Express 31 in base 2.

(b) Express −1 in base 2.

(c) Express 1/3 in base 2.

Solution.

(a) Note that 31� 1 (mod2), so that the least significant digit of x= 31 in base 2 must be 1.
The other digits then describe (x− 1)/2= 15.
In other words, 31=(:::1)2 where ::: are the digits for 15.
Continuing like this, we find 31=(11111)2.

(b) Note that −1� 1 (mod2), so that the least significant digit of x=−1 in base 2 must be 1.
The other digits then describe (x− 1)/2=−1.
In other words, −1= (:::1)2 where ::: are the digits for −1.
We conclude that −1= (:::1111)2, an infinite string of 1's.
Note. x=−1 is characterized by x+1=0. Think about starting with (:::1111)2 and adding 1. Observe
how we repeatedly get carries so that the result is indeed (:::0000)2.

(c) We proceed in the same fashion (and interpret fractions modulo 2 using modular inverses):

� Note that 1/3� 1 (mod2), so that the least significant digit of x1=1/3 in base 2 must be 1.
Hence, 1/3= (:::1)2 where ::: are the digits for x2=(x1− 1)/2=−1/3.

� −1/3� 1 (mod2), so that the next digit is 1.
Hence, 1/3= (:::11)2 where ::: are the digits for x3= (x2− 1)/2=−2/3.

� −2/3� 0 (mod2), so that the next digit is 0.
Hence, 1/3= (:::011)2 where ::: are the digits for x4=(x3− 0)/2=−1/3.

� But we have seen −1/3 before! Everything will repeat from now on.
We conclude that 1/3= (:::01010101011)2.

Note. x=1/3 is characterized by 3x=1. Think about starting with (:::01010101011)2 and multiplying
with 3= (11)2. Can you see that the result is indeed 1?

::: 1 0 1 0 1 0 1 1
� 1 1

::: 1 0 1 0 1 0 1 1
+ ::: 0 1 0 1 0 1 1

::: 0 0 0 0 0 0 0 1

Example. Russian multiplication!
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