
Notes for Lecture 4 Thu, 8/27/2020

Review. Prime number theorem

Theorem 33. The gaps between primes can be arbitrarily large.
Proof. Indeed, for each integer n> 1,

n! + 2; n! + 3; :::; n! +n

is a string of n− 1 composite numbers. Why are these numbers all composite!? �

Comment. Notice, however, how very large (compared to the gap) the numbers brought up in the proof are!

4 Diophantine equations

Diophantine equations are usual equations but we are only interested in integer solutions.

Example 34. Find the general solution to the diophantine equation 16x+ 25y=0.
Solution. The non-diophantine equation 16x + 25y = 0 has general solution (x; y) = (25t; −16t) where the
parameter t is any real number.
We need to figure out for which t this results in a solution where both coordinates x= 25t and y =−16t are
integers. Obviously, t needs to be a rational number. Since gcd (16; 25) = 1 the denominator of t must be 1,
so that t must be an integer. In other words, the general solution to the diophantine equation 16x+ 25y=0 is
(x; y)= (25t;−16t) where the parameter t is any integer.

Example 35. Find a solution to the diophantine equation 16x+ 25y=1.
Solution. Since gcd(16;25)=1, Bezout's theorem guarantees a solution, which we can find using the generalized
Euclidean algorithm. Namely, in Example 15, we found that −7 � 25+ 11 �16=1.

In other words, we have found the solution x= 11 and y=−7. In short,
�
x
y

�
=

�
11
−7

�
.

Are there other solutions? Yes! For instance, x=−14 and y=9.

What is the general solution?
Solution. In the previous example we determined that the general solution to the corresponding homogeneous
(diophantine) equation 16x+ 25y=0 is

�
x
y

�
=

�
25
−16

�
t where the parameter t is any integer.

We can add these solutions to any particular solution of 16x + 25y = 1 to obtain the general solution to
16x+ 25y=1. Therefore, the general solution is�

x
y

�
=

�
11
−7

�
+

�
25
−16

�
t=

�
11+ 25t
−7− 16t

�
;

where t is any integer.

Comment. Note that t=−1 results in
�
x
y

�
=

�
11− 25
−7+ 16

�
=

�
−14
9

�
, another solution that we observed earlier.

Example 36. Find the general solution to the diophantine equation 16x+ 25y=3.

Solution. It follows from the previous example that a particular solution is
�
x
y

�
=3

�
11
−7

�
.

Hence, the general solution is
�
x
y

�
=

�
33
−21

�
+

�
25
−16

�
t=

�
33+ 25t
−21− 16t

�
.

Example 37. Find the general solution to the diophantine equation 6x+ 15y= 10.
Solution. This equation has no (integer) solution because the left-hand side is divisible by gcd (6; 15) = 3 but
the right-hand side is not divisible by 3.
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Lemma 38. Let a; b2Z (not both zero). The diophantine equation ax+ by= c has a solution
if and only if c is a multiple of gcd (a; b).
Proof.
�=)� (the �only if� part): Let d= gcd (a; b). Then d divides ax+ by. This implies that djc.
�(=� (the �if� part): This is a consequence of Bezout's identity. �

Note that we can therefore focus on diophantine equations ax+ by= c with gcd (a; b)= 1.

(Otherwise, just divide both sides by gcd (a; b).)

Theorem 39. The diophantine equation ax+by=c with gcd (a;b)=1 has the general solution�
x
y

�
=

�
x0
y0

�
+

�
b
−a

�
t;

where t2Z is a parameter, and x0; y0 is any particular solution.

How to find a particular solution? Since gcd (a; b) = 1, we can find integers x1; y1 such that ax1+ by1= 1
(this is Bezout's identity). Multiply both sides with c, to see that we can take x0= cx1 and y0= cy1.

Proof. First, let us consider the case of all real solutions. The general solution of ax+ by= c (which describes
a line!) can be described as

�
x
y

�
=

�
x0
y0

�
+

�
b
−a

�
t.

Since gcd (a; b)= 1, this solution will be integers if and only if t is an integer. �

Example 40. 56x+ 72y=2 has no integer solutions (because 8j(56x+ 72y) but 8 - 2).

Example 41. Find the general solution to the diophantine equation 56x+ 72y= 24.
Solution. We first note that this equation has an integer solution because 24 is a multiple of gcd (56; 72)= 8.
To make our life easier, and to apply the theorem, we divide by 8 to get the equivalent equation 7x+9y=3.

A solution to 7x+9y=1 is
�
x
y

�
=

�
4
−3

�
(and we can always find such a solution using the Euclidean algorithm).

Therefore, a solution to 7x+9y=3 is
�
x
y

�
=3 �

�
4
−3

�
=

�
12
−9

�
.

In conclusion, the general solution is
�
x
y

�
=

�
12
−9

�
+

�
9
−7

�
t.

Caution. Why would it be incorrect to state the general solution as
�
x
y

�
=

�
12
−9

�
+

�
72
−56

�
t for t2Z?
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Notes for Lecture 5 Tue, 9/1/2020

Example 42. (review)

� 56x+ 72y= 15 has no integer solutions (because the left side is even but the right side is odd).

� 56x+ 72y=2 has no integer solutions (because 8j(56x+ 72y) but 8 - 2).

� 56x+ 72y=8 has an integer solution (that's Bezout's identity!) and we can find it using
the Euclidean algorithm (gcd (56; 72)= 8).

To make our life easier, we divide by 8 to get the equivalent equation 7x+9y=1.

One solution is
�
x
y

�
=

�
4
−3

�
, the general solution is

�
x
y

�
=

�
4
−3

�
+

�
9
−7

�
t where t2Z.

� 56x+ 72y= k has an integer solution if and only if k is a multiple of gcd (56; 72)= 8.

� Determine all solutions to the diophantine equation 56x+ 72y= 40.

Solution. We divide by gcd (56;72) = 8 to get 7x+9y=5.

As observed above (or by using the Euclidean algorithm), a solution to 7x+9y=1 is
�
x
y

�
=

�
4
−3

�
.

Hence, the general solution is
�
x
y

�
=5

�
4
−3

�
+

�
9
−7

�
t where t2Z.

Example 43. (problem of the �hundred fowls�, appears in Chinese textbooks from the 6th
century) If a rooster is worth five coins, a hen three coins, and three chicks together one coin,
how many roosters, hens, and chicks, totaling 100, can be bought for 100 coins?

Solution. Let x be the number of roosters, y be the number of hens, z be the number of chicks.

x+ y+ z = 100

5x+3y+
1
3
z = 100

Eliminating z from the equations by taking 3eq2− eq1, we get 14x+8y= 200, or, 7x+4y= 100.

� Since 100 is a multiple of gcd (7; 4)= 1, this equation does have integer solutions.

� We see (or find using the Euclidean algorithm) that a solution to 7x+4y=1 is
�
x
y

�
=

�
−1
2

�
.

� Hence, 7x+4y= 100 has general solution
�
x
y

�
= 100

�
−1
2

�
+

�
4
−7

�
t=

�
−100+4t
200− 7t

�
where t2Z.

� We can find z using one of the original equations: z= 100−x− y=3t.

� We are only interested in solutions with x> 0, y> 0, z> 0.
x> 0 means t> 25. y> 0 means t6 28+ 4

7
. z> 0 means t> 0.

� Hence, t2f25; 26; 27; 28g.
The four corresponding solutions (x; y; z) are (0; 25; 75), (4; 18; 78), (8; 11; 81), (12; 4; 84).
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Solving diophantine equations can be incredibly hard!

Example 44. You may have seen Pythagorean triples, which are solutions to the diophantine
equation x2+ y2= z2.

A few cases. Some solutions (x; y; z) are (3; 4; 5), (6; 8; 10) (boring! why?!), (5; 12; 13), (8;15; 17), :::

The general solution. (m2−n2; 2mn;m2+n2) is a Pythagorean triple for all integers m;n.
These solutions plus scaling generate all Pythagorean triples!
For instance, m=2; n=1 produces (3; 4; 5), while m=3; n=2 produces (5; 12; 13).
Fermat's last theorem. For, n> 2, the diophantine equation xn+ yn= zn has no solutions!
Pierre de Fermat (1637) claimed in a margin of Diophantus' book Arithmetica that he had a proof (�I have
discovered a truly marvellous proof of this, which this margin is too narrow to contain.�).
It was finally proved by Andrew Wiles in 1995 (using a connection to modular forms and elliptic curves).
This problem is often reported as the one with the largest number of unsuccessful proofs.

Example 45. (HW) Determine all solutions of 4x+7y= 67 with x and y positive integers.

Solution. We see that x=2, y=−1 is a solution to 4x+7y=1 (you can, of course, use the Euclidean algorithm
if you wish).
Hence, a particular solution to 4x+7y= 67 is given by x= 134, y=−67.
The general solution to 4x+7y= 67 is thus given by x= 134+7t, y=−67− 4t, where t can be any integer.

� x> 0 if and only if 134+7t > 0 if and only if t >−134
7
�−19.14. That is, t=−19;−18; :::

� y > 0 if and only if −67− 4t > 0 if and only if t <−67
4
=−16.75. That is, t=−17;−18; :::

Hence, we get a solution (x; y) with positive integers x; y for t = −19; −18; −17. The three corresponding
solutions are: (1; 9), (8; 5), (15; 1).

5 Congruences

Example 46. Today is Tuesday. What day of the week will it be a year (365 days) from now?

Solution. Since 365� 1 (mod7), it will be Wednesday (on 9/1/2021).

a� b (modn) means a= b+mn (for some m2Z)

In that case, we say that �a is congruent to b modulo n�.

� In other words: a� b (modn) if and only if a− b is divisible by n.

� In yet other words: a� b (modn) if and only if a and b leave the same remainder when dividing by n.

Example 47. 17� 5 (mod12) as well as 17� 29�−7 (mod12)

Example 48. We will discuss in more detail that, and how, we can calculate with congruences.

Here is an appetizer: What is 2100 modulo 3? That is, what's the remainder upon division by 3?

Solution. 2�−1 (mod3). Hence, 2100� (−1)100=1 (mod3).
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Theorem 49. We can calculate with congruences.

� First of all, if a� b (modn) and b� c (modn), then a� c (modn).
In other words, being congruent is a transitive property.
Why? nj(b− a) and nj(c− b), then nj((b− a)+ (c− b))

=c−a

.

Alternatively, we can note that each of a; b; c leaves the same remainder when dividing by n.

� If a� b (modn) and c� d (modn), then

(a) a+ c� b+ d (modn)
Why? (b+ d)− (a+ c)= (b− a) + (d− c) is indeed divisible by n
(because nj(b− a) and nj(d− c)).

(b) ac� bd (modn)
Why? bd− ac=(bd− bc) + (bc− ac)= b(d− c)+ c(b− a) is indeed divisible by n
(because nj(b− a) and nj(d− c)).

� In particular, if a� b (modn), then ak� bk (modn) for each positive integer k.

Example 50. Compute 36 � 75 (mod 11).
Solution. Since 36� 3 (mod11) and 75�−2 (mod11), we have 36 �75� 3 � (−2)=−6� 5 (mod11).
Important comment. We do not need to compute that 36 �75=2700 (and then reduce modulo 11)! Our ability
to avoid computing large intermediate quantities is crucial for applications like cryptography.
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Notes for Lecture 6 Thu, 9/3/2020

Example 51. Show that 41j220− 1.
Solution. In other words, we need to show that 220� 1 (mod41).
25= 32�−9 (mod41). Hence, 220=(25)4� (−9)4= 812� (−1)2=1 (mod41).

We saw last time that we can calculate with congruences. However:

Example 52. (caution!) If a� b (modn), then ac� bc (modn) for each integer c.

However, the converse is not true! We can have ac� bc (modn) without a� b (modn) (even
assuming that c�/ 0).
For instance. 2 � 4� 2 � 1 (mod6) but 4�/ 1 (mod6)
However. 2 � 4� 2 � 1 (mod6) means 2 � 4=2 � 1+ 6m. Hence, 4=1+3m, or, 4� 1 (mod3).

Similarly, ab� 0 (modn) does not always imply that a� 0 (modn) or b� 0 (modn).
For instance. 4 � 15� 0 (mod6) but 4�/ 0 (mod6) and 15�/ 0 (mod6)

These issues do not occur when n is a prime, as the next results shows.

Lemma 53. Let p be a prime.

(a) If ab� 0 (mod p), then a� 0 (mod p) or b� 0 (mod p).

(b) Suppose c�/ 0 (mod p). If ac� bc (mod p), then a� b (mod p).

Proof.

(a) This statement is equivalent to Lemma 19: if pjab then pja or pjb.

(b) ac� bc (mod p) means that p divides ac− bc=(a− b)c.
Since p is a prime, it follows that pj(a− b) or pjc.
In the latter case, c� 0 (mod p), which we excluded. Hence, pj(a− b). That is, a� b (mod p). �

5.1 Congruences: modular inverses

We saw that ac� bc (modn) does not always imply a� b (modn).
For instance, 2 � 4� 2 � 1 (mod 6) but 4�/ 1 (mod 6).
The reason is that 2 is not invertible modulo 6.

The issue is that 2j6 which results in 2 � 3� 0 (mod6).

Let us briefly discuss residues that are invertible modulo n.

Example 54. Note that 3 � 7� 1 (mod 10). Hence, we write 3−1� 7 (mod 10) and say that 7
is the modular inverse of 3 modulo 10.
Comment. As expected, we have (x−1)−1� x (modn). Here, (3−1)−1� 7−1� 3 (mod10).

Example 55. Solve 3x� 4 (mod10).
Solution. From the previous problem, we know that 3−1� 7 (mod10).
Hence, x� 3−1 � 4� 7 � 4=8 (mod10).
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Example 56. Determine 4−1 (mod13).
Brute force solution. We need to find a residue x such that 4x� 1 (mod13). We can try the values 0; 1; 2;
3; :::; 12 and find that x= 10 is the only solution modulo 13 (because 4 � 10� 1 (mod13)).
This approach may be fine for small examples when working by hand, but is not practical for serious congruences.
On the other hand, the Euclidean algorithm can compute modular inverses extremely efficiently (see below).
Glancing. In this special case, we can actually see the solution if we notice that 4 � 3 = 12, so that 4 � 3 �
−1 (mod13) and therefore 4−1�−3 (mod13). [Or, equivalently, −4−1� 10 (mod13).]

Solution. Since gcd (4; 13) = 1, Bézout's identity promises that 4r+ 13s=1 for some integers r; s. Reducing
4r+ 13s=1 modulo 13, we find 4r� 1 (mod13), so that 4−1� r (mod13).
Using the Euclidean algorithm, we find, for instance, r= 10 and s=−3. Hence, 4−1� 10 (mod13).

Example 57. Solve 4x� 5 (mod13).
Solution. From the previous problem, we know that 4−1�−3 (mod13).
Hence, x� 4−1 � 5�−3 � 5=−2 (mod13).
Advanced comment. We were able to solve 4x� 5 (mod13) by computing 4−1 using the Euclidean algorithm
instead of relying on brute force. However, for more complicated equations like 4x� 5 (mod13), we don't know
any method of finding solutions x that is significantly better than brute force. Indeed, certain cryptographic
methods depend precisely on the difficulty of solving congruences like 4x� 5 (mod13).
[Such a congruence is called a discrete logarithm problem because the solution to 4x=5 is x= log4(5).]

Example 58. Determine 16−1 (mod25).
Solution. Using the Euclidean algorithm, in Example 15, we found that 11 �16− 7 � 25=1.
Reducing that modulo 25, we get 11 � 16� 1 (mod25).
Hence, 16−1� 11 (mod25).

Let a; b 2Z, not both zero. Recall that the diophantine equation ax+ by = c has a solution if
and only if c is a multiple of gcd (a; b). In particular, ax+ by = 1 has a solution if and only if
gcd (a; b)= 1.

Lemma 59. a is invertible modulo n if and only if gcd (a; n)= 1.

Proof. The congruence ax � 1 (mod n) is equivalent to ax + ny = 1 where y is some integer. Note that
ax+ ny = 1 is a diophantine equation (we are looking for integer solutions x; y) and that it has a solution if
and only if gcd (a; n)= 1. �

Corollary 60. Let p be a prime. Then all nonzero residues are invertible modulo p.
Advanced comment. It is common to write Z/nZ for the set of all residues modulo n. The fact that we can
add and multiply as usual, makes Z/nZ into a (finite) ring.
Let p be a prime. The fact that, in addition, all nonzero residues are invertible makes Z/pZ into a (finite) field.
The fields we are familiar with, such as Q (rationals), R (reals), C (complex numbers) are all infinite.
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