
Notes for Lecture 1 Tue, 8/18/2020

� N= f1; 2; 3; :::g are the natural numbers.

� Z= f0;�1;�2; :::g are the integers (�Zahlen�).

� Q=
n
p

q
: p2Z; q 2N

o
are the rationals.

� R are the reals (limits of sequences of rationals).

� C are the complex numbers.

Advanced comment. Number theory is also very much concerned with the study of the algebraic numbers Q� ,
which are those numbers that are the roots of polynomials with integer coefficients. For instance, 5

p
(a root

of x2− 5) and i (a root of x2+1) are examples of simple algebraic numbers (neither of which is rational).
Comment. The numbers � and e are probably the most fundamental mathematical constants, which are not
rational. However, we understand the nature of these numbers so little that we do not even know whether e+�
is rational or not. (Overwhelming evidence suggests that e+ � is irrational but we do not have a proof.) Isn't
that shocking and shameful?!

Example 1. 5
p

is not rational.
Proof. Assume (for contradiction) that we can write 5

p
=

n

m
with n; m 2N. By canceling common factors,

we can ensure that this fraction is reduced.
Then 5m2=n2, from which we conclude that n is divisible by 5. Write n=5k for some k2N. Then 5m2=(5k)2

implies that m2 = 5k2. Hence, m is also divisible by 5. This contradicts the fact that the fraction n /m is
reduced. Hence, our initial assumption must have been wrong. �

Variations. Does the same proof apply to, say, 7
p

? Which step of the proof fails for 4
p

?

1 Divisibility

1.1 Quotients and remainders

Theorem 2. Let a; b2Z, with b=/ 0. Then there exist unique integers q and r such that

a= qb+ r; 06 r < jbj (that is, a
b
= q+

r

b
).

q is the quotient, and r the remainder in the division of a by b.

Example 3. For a= 20, b=6, we have 20
6
=3+

2

6
. That is, q=3 and r=2.

For a= 20, b=5, we have 20
5
=4+

0

5
. That is, q=4 and r=0.

Example 4. When b=2, then r2f0;1g, and every integer is either of the form 2q or of the form
2q+1. We call numbers even or odd correspondingly.

Example 5. Show that the square of an integer leaves the remainder 0 or 1 upon division by 4.
That is, none of the squares 1; 4; 9; 16; 25; 36; ::: leave remainder 2 or 3 when dividing by 4!!
Proof. Every integer is of the form 2q or 2q + 1. Upon division by 4, (2q)2 = 4q2 leaves remainder 0,
(2q+1)2=4q2+4q+1 leaves remainder 1.

Example 6. Show that the square of an integer leaves the remainder 0 or 1 upon division by 3.
Proof. Every integer is of the form 3q, 3q+1 or 3q+2. Upon division by 3, (3q)2=9q2 leaves remainder 0,
while both (3q+1)2=9q2+6q+1 and (3q+2)2=9q2+ 12q+4 leave remainder 1.
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1.2 Greatest common divisor

Definition 7. Let a; b2Z and a=/ 0. We write ajb (and say b is divisible by a) if b

a
2Z.

In other words, ajb if and only if there exists an integer c such that ac= b.

Example 8. 3j9 but 3 - 10.

Definition 9. Let a; b2Z (not both zero). The greatest common divisor gcd (a; b) of a and
b is the largest positive integer c such that cja and cjb.
If gcd (a; b)= 1 then we say that a and b are coprime (to each other).

Example 10.

(a) gcd (2; 4)=2

(b) gcd (15; 28)= 1

(c) gcd (30; 108)= gcd (2 � 3 � 5; 22 � 33)= 6

(d) gcd (60; 2020)= gcd (22 � 3 � 5; 22 � 5 � 101)= 22 � 5= 20

BAD?! Computing gcd (a; b) by factoring a and b is not a good approach. Though small numbers might be
easy to factor, it is very hard to factor even moderately large numbers in general.
Next class, we will learn about a good way to compute the gcd, which works well even for enormous numbers
(in particular, it avoids factorizing the involved numbers).

Indeed, in 1991, RSA Laboratories challenged everyone to factor several numbers including:
1350664108659952233496032162788059699388814756056670275244851438515265\
1060485953383394028715057190944179820728216447155137368041970396419174\
3046496589274256239341020864383202110372958725762358509643110564073501\
5081875106765946292055636855294752135008528794163773285339061097505443\
34999811150056977236890927563

Since then, nobody has been able to factor this 1024 bit number (309 decimal digits). Until 2007,
cash prizes were offered up to 200,000 USD, with 100,000 USD for the number above (20,000
USD collected in 2005 for factoring a number with 193 decimal digits; 232 decimal digits factored
in 2009, larger ones remain unfactored; largest one has 617 decimal digits). The reason people
are very interested in factoring is that the difficulty of factoring is actually crucially used in many
cryptosystems, including RSA.

https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
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Notes for Lecture 2 Thu, 8/20/2020

Lemma 11. If a= qb+ r, then gcd (a; b)= gcd (b; r).

Proof. Let d2N. We need to show that dja and djb iff djr and djb. [iff is short for �if and only if�]
Equivalently, assuming that djb, we need to show that dja iff djr.

Indeed, it follows from a

d
=
qb+ r

d
=
qb

d
+

r

d
that a

d
2Z iff r

d
2Z. �

Example 12. Using this lemma to compute gcd 's is referred to as the Euclidean algorithm.

(a) gcd (30; 108)
108=3�30+18

= gcd (18; 30)
30=1�18+12

= gcd (12; 18)
18=1�12+6

= gcd (6; 12)
12=2�6+0

=6

Alternatively, taking a shortcut by allowing negative remainders:

gcd (30; 108)
108=4�30−12

= gcd (12; 30)
30=2�12+6

= gcd (6; 12)
12=2�6+0

=6

(b) gcd (16; 25)
25=1�16+9

= gcd (9; 16)
16=1�9+7

= gcd (7; 9)
9=1�7+2

= gcd (2; 7)
7=3�2+1

= gcd (1; 2)=1

Alternatively, again, taking a shortcut by allowing negative remainders:

gcd (16; 25)
25=2�16−7

= gcd (7; 16)
16=2�7+2

= gcd (2; 7)
7=3�2+1

= gcd (1; 2)=1

Theorem 13. (Bézout's identity) Let a; b2Z (not both zero). There exist x; y 2Z such that

gcd (a; b)= ax+ by:

Proof. We proceed iteratively:

a = q1 b+ r1; 0<r1<b

b = q2 r1+ r2; 0<r2<r1

r1 = q3 r2+ r3; 0<r3<r2
���

rn−3 = qn−1 rn−2+ rn−1; 0<rn−1<rn−2

rn−2 = qn rn−1+ rn; 0<rn<rn−1

rn−1 = qn+1 rn+0

Along the way, we have gcd (a; b) = gcd (b; r1) = gcd (r1; r2) = :::= gcd (rn−2; rn−1) = gcd (rn−1; rn) = rn
(why is it obvious that the last gcd is rn?).
By the second-to-last equation, gcd (a; b) = rn= rn−2− qnrn−1 is a linear combination of rn−2 and rn−1.
Then, moving one up, we replace rn−1 with rn−3− qn−1rn−2 to write gcd (a; b) as a linear combination of
rn−3 and rn−2. Continuing in that fashion, we ultimately obtain gcd(a;b) as a linear combination of a and b. �

Let us revisit the previous example to illustrate how the Euclidean algorithm provides us with a
way to write gcd (a; b) as an integer linear combination of a and b.
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Example 14. Find d= gcd (30; 108) as well as integers r; s such that d= 30r+ 108s.
Solution. We apply the extended Euclidean algorithm:

gcd (30; 108) 108 =4 � 30 − 12 or: A 12=−1 � 108 +4 � 30
= gcd(12; 30) 30 =2 � 12 +6 B 6=1 � 30 − 2 � 12
= gcd(6; 12) 12 =2 � 6 +0

= 6

Backtracking through this, we find that Bézout's identity takes the form

6 = 1 � 30 − 2 � 12 = 1 � 30 − 2
(
−1 � 108 +4 � 30

�
=−7 � 30 +2 � 108

B A

In summary, we have −7 � 30+2 �108=6.

Example 15. Find d= gcd (16; 25) as well as integers r; s such that d= 16r+ 25s.
Solution. We apply the extended Euclidean algorithm:

gcd (16; 25) 25 =2 � 16 − 7 or: A 7=−1 � 25 +2 � 16
= gcd(7; 16) 16 =2 � 7 +2 B 2= 1 � 16 − 2 � 7
= gcd(2; 7) 7 = 3 � 2 + 1 C 1= 7 − 3 � 2
= 1

Backtracking through this, we find that Bézout's identity takes the form

1 = 7 − 3 � 2 = 7 � 7 − 3 � 16 = −7 � 25 + 11 � 16
C B A

In summary, we have −7 � 25+ 11 � 16=1.

Example 16. (extra) Find d= gcd (17; 23) as well as integers r; s such that d= 17r+ 23s.
Solution. We apply the extended Euclidean algorithm:

gcd (17;23) 23 =1 � 17 +6 or: A 6=1 � 23 − 1 � 17
= gcd(6;17) 17 =3 � 6 − 1 B 1=−1 � 17 +3 � 6
= 1

Backtracking through this, we find that Bézout's identity takes the form

1 = −1 � 17 +3 � 6 = −4 � 17 +3 � 23
B A

In summary, we have 1=−4 � 17+3 �23.

2 Primes

Lemma 17. (Euclid's lemma) If djab and gcd (a; d)= 1, then djb.
Proof. Since (a; d) = 1, we can find x; y so that ax+ dy=1.
We then see that b= abx+ bdy is divisible by d (because djab). �

Definition 18. An integer p> 1 is a prime if its only positive divisors are 1 and p.

Lemma 19. If p is a prime and pjab, then pja or pjb.
Proof. If pja, then we are done. Otherwise, p -a. In that case, gcd(a; p)= 1 because the only positive divisors
of p are 1 and p. Our claim therefore is a special case of the previous lemma. �

Corollary 20. If p is a prime and pja1a2���ar, then pjak for some k 2f1; 2; :::; rg.
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Example 21. This property is unique to primes. For instance, 6j8 � 21 but 6 - 8 and 6 - 21.
Whereas, 2j8 � 21 and, indeed 2j8. Similarly, 3j8 � 21 and, indeed 3j21.

Theorem 22. (Fundamental Theorem of Arithmetic) Every integer n> 1 can be written as
a product of primes. This factorization is unique (apart from the order of the factors).

Proof. Let us first prove, by (strong) induction, that every integer n> 1 can be written as a product of primes.

� (base case) n=2 is a prime. There is nothing to do.

� (induction step) Suppose that we already know that all integers less than n can be written as a product
of primes. We need to show that n can be written as a product of primes, too.
Let d> 1 be the smallest divisor of n. Then d is necessarily a prime (because if a > 1 divides d, then a
also divides n so that a= d because d is the smallest number dividing n).
If d=n, then n is a prime, and we are already done.
Otherwise, n

d
>1 is an integer, which, by the induction hypothesis, can be written as the product of some

primes p1���pr. Then, n= dp1���pr.

Finally, let us think about why this factorization is unique. Suppose we have two factorizations

n= p1p2���pr= q1q2���qs:

By the corollary, each pi divides one of the qj's (and vice versa), in which case pi= qj, so we can cancel common
factors until we see that both factorizations are identical. �

Advanced comment. The idea of factorization into primes and the uniqueness of such factorizations should not
be taken entirely for granted. For instance, when instead of integers a 2Z we work with �generalized integers�
such as a+bi 5

p
, with a;b2Z, then factorization is not unique: for example, we have two different factorizations

of 6, namely,

6=2 � 3; 6= (1+ i 5
p

)(1− i 5
p

);

and each of the numbers 2, 3, 1� i 5
p

cannot be factored further.

Example 23. 140=22 � 5 � 7, 2016=25 � 32 � 7, 2017 is a prime, 2018=2 � 1009, 2019=3 � 673,
2020=22 � 5 � 101.
How can we check that 2017 is indeed prime? Well, none of the small primes 2; 3; 5; 7;11 divide 2017. But
how far do we need to check? Since 2017

p
� 44.91, we only need to check up to prime 43. (Why?!)
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Notes for Lecture 3 Tue, 8/25/2020

Definition 24. Let a; b 2Z (both not zero). The least common multiple lcm (a; b) of a and
b is the smallest positive integer m such that ajm and bjm.

Example 25. lcm (12; 42)= lcm (22 � 3; 2 � 3 � 7)= 22 � 3 � 7= 84= 12 � 42
6

Lemma 26. For a; b2N, lcm (a; b)=
ab

gcd (a; b) .

Proof. Write d= gcd (a; b) and m=
ab

d
. Note that ajm because m

a
=

b

d
is an integer. Likewise, bjm. In other

words, m is a common multiple of a and b. We still need to show that it is the smallest.
Let n be a positive integer such that ajn and bjn. (We need to show that m6n. We do that by showing mjn.)
Recall that d= ax+ by for some integers x; y. Using that, we find that

n
m
=
nd
ab

=
n(ax+ by)

ab
=
n
b
x+

n
a
y

is an integer. That is, mjn. �

3 More on primes

Example 27. The sieve of Eratosthenes is an efficient way to find all primes up to some n.

Write down all numbers 2;3;4; :::; n. We begin with 2 as our first prime. We proceed by crossing out all multiples
of 2, because these are not primes. The smallest number we didn't cross out is 3, our next prime. We again
proceed by crossing out all multiples of 3, because these are not primes. The smallest number we didn't cross
out is 5 (note that it has to be prime because, by construction, it is not divisible by any prime less than itself).
Problem. If n= 106, at which point can we stop crossing out numbers?
We can stop when our �new prime� exceeds n

p
= 1000. All remaining numbers have to be primes. Why?!

Example 28. (Euclid) There are infinitely many primes.

Proof. Assume (for contradiction) there are only finitely many primes: p1; p2; :::; pn.
Consider the number N = p1 � p2 � ::: � pn+1.
Each prime pi divides N − 1 and so pi does not divide N .
Thus any prime dividing N is not on our list. Contradiction. �

Historical note. This is not necessarily a proof by contradiction, and Euclid (300BC) himself didn't state it as
such. Instead, one can think of it as a constructive machinery of producing more primes, starting from any finite
collection of primes.
A variation. Can we replace N = p1 � p2 � ::: � pn+1 in the proof with N = p1 � p2 � ::: � pn− 1? Yes! (If n> 2.)
Playing with numbers.
2 + 1 = 3 is prime. 2 � 3 + 1 = 7 is prime. 2 � 3 � 5 + 1 = 31 is prime. 2 � 3 � 5 � 7 + 1 = 211 is prime.
2 � 3 � 5 � 7 � 11+1= 2311 is prime. 2 � 3 � 5 � 7 �11 �13+1= 30031= 59 �509 is not prime.
Let Pn= p1 � p2 � ::: � pn+ 1 where pi is the ith prime. If Pn is prime, it is called a primorial prime. We have
just checked that P1; P2; P3; P4; P5 are primes but that P6 is not a prime.
The next primorial primes are P11;P75;P171;P172. It is not known whether there are infinitely Pn which are prime.
More shamefully, it is not known whether there are infinitely many Pn which are not prime.

See, for instance: http://mathworld.wolfram.com/PrimorialPrime.html
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Example 29. In 12/2018, a new largest (proven) prime was found: 282;589;933− 1.
https://www.mersenne.org/primes/?press=M82589933

This is a Mersenne prime (like the last 17 record primes). It has a bit over 24.8 million (decimal) digits (versus
23.2 for the previous record). The prime was found as part of GIMPS (Great Internet Mersenne Prime Search),
which offers a $3,000 award for each new Mersenne prime discovered.

The EFF (Electronic Frontier Foundation) is offering $150,000 (donated anonymously for that
specific purpose) for the discovery of the first prime with at least 100 million decimal digits.
https://www.eff.org/awards/coop

[Prizes of $50,000 and $100,000 for primes with 1 and 10 million digits have been claimed in 2000 and 2009.]

Example 30. (p; p+2) is a twin prime pair if both p and p+2 are primes.
Just making sure. (2; 3) is the only pair (p; p+1) with p and p+1 both prime. (Why?!)
Some twin prime pairs. (3; 5), (5; 7), (11; 13), (17; 19), (29; 31), (41;43), (59;61), (71; 73), (101; 103), :::
Largest known one: 2996863034895 � 21290000� 1 (388; 342 decimal digits; found 2016)
Twin prime conjecture. Euclid already conjectured in 300 BCE that there are infinitely many twin primes.
Despite much effort, noone has been able to prove that in more than 20 centuries.
Recent progress. It is now known that there are infinitely many pairs of primes (p1; p2) such that the gap
between p1 and p2 is at most 246 (the break-through in 2013 due to Yitang Zhang had 7 �107 instead of 246).

Example 31. (Bertrand's postulate) For each n> 1, the interval (n; 2n) contains at least one
prime.
Advanced comment. Let �(x) be the number of primes6 x. It follows fromBetrand's postulate that �(2n)>n.
To prove that, note that 2 is a prime and that each of the (disjoint!) intervals (2;4), (4;8), (8;16), :::, (2n−1;2n)
contains at least one prime.
This is a very poor bound. For instance, we find �(220)>20 where 220 is a little bigger than 106. Compare that
to the actual numbers in the prime number theorem below.
Historical comment. This was conjectured by Bertrand in 1845 (he checked up to n=3 � 106), and proved by
Chebyshev in 1852.

The following famous and deep result quantifies the infinitude of primes.

Theorem 32. (prime number theorem) Let �(x) be the number of primes 6 x. Then

lim
x!1

�(x)
x/ln(x)

= 1:

In other words: Up to x, there are roughly x/ln(x) many primes.
Examples.
proportion of primes up to 106: 78; 498

106 = 7.85% vs the estimate 1

ln(106) =
1

6ln(10) = 7.24%

proportion of primes up to 1012: 37; 607; 912; 018
1012

= 3.76% vs the estimate 1

ln(1012)
=

1

12ln(10)
= 3.62%

An example of huge relevance for crypto. Many cryptographic schemes require us to be able to generate large
random primes, where large typically means numbers with about 2048 binary digits.
By the PNT, the proportion of primes up to 22048 is about 1

ln(22048) = 0.0704%.

That means, roughly, 1 in 1500 numbers of this magnitude are prime. That means we (i.e. our computer) can
efficiently generate large random primes by just repeatedly generating large random numbers and discarding those
that are not prime (we will discuss primality testing in cryptography).
Comment. Here, ln(x) is the logarithm with base e. Isn't it wonderful how Euler's number e � 2.71828 is
sneaking up on the primes?
Historical comment. Despite progress by Chebyshev (who succeeded in 1852 in showing that the quotient in the
above limit is bounded, for large x, by constants close to 1), the PNT was not proved until 1896 by Hadamard
and, independently, de la Vallée Poussin, who both used new ideas due to Riemann.
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