
Sketch of Lecture 24 Tue, 12/3/2019

Example 179. (extra) Can we generalize the previous example by replacing 2 with x?

That is, we are now interested in the sums s(n)= 1+ x+ x2+ :::+ xn.

Mimic previous direct approach. xs(n)=x(1+x+x2+ :::+xn)=x+x2+ :::+xn+1= s(n)¡ 1+xn+1.
Hence, (x¡ 1)s(n)=xn+1¡ 1, and we have found:

1+x+x2+ :::+xn=
xn+1¡ 1
x¡ 1 (geometric sum)

Sigma notation. Instead of 1+x+ x2+ :::+ xn we will begin to write
X
k=0

n

xk.

Geometric series. We can let n!1 to get
X
k=0

1
xk=

1
1¡ x

, provided that jxj< 1.

Example 180. (Homework) Prove the formula for geometric sums using induction.

Example 181. (sum of squares) For all integers n> 1, 12+22+ :::+n2=
n(n+1)(2n+1)

6
.

Proof. Write t(n)= 12+22+ :::+n2.
We use induction on the claim t(n)=

n(n+1)(2n+1)

6
.

� The base case (n=1) is that t(1)= 1. That's true.

� For the inductive step, assume the formula holds for some value of n.

We need to show the formula also holds for n+1.

t(n+1) = t(n)+ (n+1)2

(using the induction hypothesis) =
n(n+1)(2n+1)

6
+ (n+1)2

=
(n+1)
6

[2n2+n+6n+6]

=
(n+1)
6

(n+2)(2n+3)

This shows that the formula also holds for n+1.

By induction, the formula is true for all integers n> 1. �

Example 182. Observe the following connection with our sums and integrals from calculus:

�
Z
0

n

xdx=
n2

2
versus

X
x=0

n

x=1+2+ :::+n=
n(n+1)

2
=
n2

2
+ lower order terms

�
Z
0

n

x2dx=
n3

3
versus

X
x=0

n

x2=12+22+ :::+n2=
n(n+1)(2n+1)

6
=
n3

3
+ lower order terms

�
Z
0

n

x3dx=
n4

4
versus

X
x=0

n

x3=13+23+ :::+n3=

�
n(n+1)

2

�2
=
n4

4
+ lower order terms

The connection makes sense: the integrals give areas below curves, and the sums are approximations to these
areas (rectangles of width 1).
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Example 183. (Riemann hypothesis) The Riemann zeta function �(s)=
P

n>1
1

ns
converges

(for real s) if and only if s> 1.

The divergent series �(1) is the harmonic series, and �(p) is often called a p-series in Calculus II.

Comment. Euler achieved worldwide fame by discovering and proving that �(2)= �2

6
(and similar formulas for

�(4); �(6); :::).
For complex values of s=/ 1, there is a unique way to �analytically continue� this function. It is then �easy� to
see that �(¡2)=0, �(¡4)=0, :::. The Riemann hypothesis claims that all other zeroes of �(s) lie on the line
s=

1

2
+ a ¡1
p

(a 2R). A proof of this conjecture (checked for the �rst 10,000,000,000,000 zeroes) is worth
$1,000,000.
http://www.claymath.org/millennium-problems/riemann-hypothesis

The connection to primes. Here's a vague indication that �(s) is intimately connected to prime numbers:

�(s) =

�
1+

1
2s
+

1

22s
+ :::

��
1+

1
3s
+

1

32s
+ :::

��
1+

1
5s
+

1

52s
+ :::

�
���

=
1

1¡ 2¡s
1

1¡ 3¡s
1

1¡ 5¡s
���

=
Y

p prime

1

1¡ p¡s

This in�nite product is called the Euler product for the zeta function. If the Riemann hypothesis was true, then
we would be better able to estimate the number �(x) of primes p6 x.
More generally, certain statements about the zeta function can be translated to statements about primes. For
instance, the (non-obvious!) fact that �(s) has no zeros for Res=1 implies the prime number theorem that we
discussed earlier.
http://www-users.math.umn.edu/~garrett/m/v/pnt.pdf
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