
Sketch of Lecture 23 Thu, 11/21/2019

19 Basic proof techniques

19.1 Proofs by contradiction

Example 174. (again) 5
p

is not rational.

Proof. Assume (for contradiction) that we can write 5
p

=
n

m
with n; m 2N. By canceling common factors,

we can ensure that this fraction is reduced.
Then 5m2=n2, from which we conclude that n is divisible by 5. Write n=5k for some k2N. Then 5m2=(5k)2

implies that m2 = 5k2. Hence, m is also divisible by 5. This contradicts the fact that the fraction n /m is
reduced. Hence, our initial assumption must have been wrong. �

Variations. Does the same proof apply to, say, 7
p

?
Which step of the proof fails for 9

p
?

Comment. We showed earlier that [1; 1;1;1; :::]= 1+ 5
p

2
. Since this is an in�nite continued fraction, this proves

that 1+ 5
p

2
is irrational. Consequently, 5

p
is irrational as well.

19.2 A famous example of a direct proof

Example 175. (Gauss) 1+ 2+ :::+n=
n(n+1)

2

Proof. Write s(n)= 1+ 2+ :::+n.
2s(n)= (1+2+ :::+n)+(n+(n¡ 1)+ :::+1)=(1+n)+ (2+n¡1)+ :::+(n+1)=n � (n+1). Done! �

Anecdote. 9 year old Gauss (1777-1855) and his classmates were tasked to add the numbers 1 to 100 (and not
bother their teacher while doing so). Gauss was not writing much on his slate::: just the �nal answer: 5050.

19.3 Proofs by induction

(induction) To prove that CLAIM(n) is true for all integers n>n0, it su�ces to show:

� (base case) CLAIM(n0) is true.

� (induction step) If CLAIM(n) is true for some n, then CLAIM(n+1) is true as well.

Why does this work? By the base case, CLAIM(n0) is true. Thus, by the induction step, CLAIM(n0+1) is
true. Applying the induction step again shows that CLAIM(n0+2) is true, :::
Comment. In the induction step, we may even assume that CLAIM(n0);CLAIM(n0+1); :::;CLAIM(n) are
all true. This is sometimes referred to as strong induction.
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Example 176. (Gauss, again) For all integers n> 1, 1+ 2+ :::+n=
n(n+1)

2
.

Proof. Again, write s(n)= 1+2+ :::+n.

CLAIM(n) is that s(n) = n(n+1)

2
.

� (base case) CLAIM(1) is that s(1)= 1(1+ 1)

2
=1. That's true.

� (induction step) Assume that CLAIM(n) is true (the induction hypothesis) for some �xed n.

s(n+1)= s(n) + (n+1)=
n(n+1)

2
this is where we use

the induction hypothesis

+(n+1)=
(n+1)(n+2)

2

This shows that CLAIM(n+1) is true as well.

By induction, the formula is therefore true for all integers n> 1. �
Comment. The claim is also true for n=0 (if we interpret the left-hand side correctly).

Example 177. Induction is not only a proof technique but also a common way to de�ne things.

� The factorial n! can be de�ned inductively (i.e. recursively) by

0!= 1; (n+1)!=n! � (n+1):

Comment. This may not seem impressive, because we can �spell out� n!= 1 � 2 � 3���(n¡ 1)n directly.

� The Fibonacci numbers Fn are de�ned inductively (i.e. recursively) by

F0=0; F1=1; Fn+1=Fn+Fn¡1:

Getting a feeling. F2=F1+F0=1, F3=F2+F1=2, F4=3, F5=5, F6=8, F7= 13, :::

Comment. Though not at all obvious, there is a way to compute Fn directly. Let '= 1+ 5
p

2
�1.618.

Then Fn= b'n/ 5
p
c. Try it! For instance, '10/ 5

p
� 55.0036. That seems like magic at �rst. But

it is the beginning of a general theory (look up, for instance, Binet's formula and C-�nite sequences).
Also, recall that we observed that Fn+1/Fn are the convergents of the continued fraction for '.

Example 178. We are interested in the sums s(n)= 1+2+4+ :::+2n.

Getting a feeling. s(1)=1+2=3, s(2)=1+2+4=7, s(3)=1+2+4+8= 15, s(4)= 31
Conjecture. s(n)= 2n+1¡ 1.
Proof by induction. The statement we want to prove by induction is: s(n)= 2n+1¡ 1 for all integers n> 1.

� (base case) s(1)= 1=21+1¡ 1 veri�es that the claim is true for n=1.

� (induction step) Assume that s(n)= 2n+1¡ 1 is true for some �xed n.

We need to show that s(n+1)=2n+2¡ 1.
Using the induction hypothesis, s(n+1)= s(n) + 2n+1 =

IH
(2n+1¡ 1)+2n+1=2n+2¡ 1. QED!

Direct proof. 2s(n)=2(1+2+4+ :::+2n)=2+4+ :::+2n+1= s(n)¡1+2n+1. Hence, s(n)=2n+1¡1.

Armin Straub
straub@southalabama.edu

54


