Sketch of Lecture 23 Thu, 11/21/2019

19 Basic proof techniques

119.1 Proofs by contradiction

Example 174. (again) /5 is not rational.

Proof. Assume (for contradiction) that we can write /5 = % with n, m € N. By canceling common factors,
we can ensure that this fraction is reduced.

Then 5m? =n?, from which we conclude that n is divisible by 5. Write n =5k for some k € N. Then 5m? = (5k)?
implies that m? = 5k2. Hence, m is also divisible by 5. This contradicts the fact that the fraction n/mis
reduced. Hence, our initial assumption must have been wrong. (I

Variations. Does the same proof apply to, say, /77
Which step of the proof fails for /97

Comment. We showed earlier that [1;1,1,1,...]= ! +2\/3. Since this is an infinite continued fraction, this proves
1 L L
that %ﬁ is irrational. Consequently, 1/5 is irrational as well.

119.2 A famous example of a direct proof

n(n+1)

Example 175. (Gauss) 1+2+...+n=—

Proof. Write s(n)=14+2+...+n.
2s(n)=14+24+...4n)+(n+(n—-1)+..+1)=1+n)+(24+n—-1)+...+4(n+1)=n-(n+1). Done! O

Anecdote. 9 year old Gauss (1777-1855) and his classmates were tasked to add the numbers 1 to 100 (and not
bother their teacher while doing so). Gauss was not writing much on his slate... just the final answer: 5050.

119.3 Proofs by induction

(induction) To prove that CLAIM(n) is true for all integers n > ny, it suffices to show:

e (base case) CLAIM(ny) is true.

e (induction step) If CLAIM(n) is true for some n, then CLAIM(n + 1) is true as well.

Why does this work? By the base case, CLAIM(ng) is true. Thus, by the induction step, CLAIM(ng+ 1) is
true. Applying the induction step again shows that CLAIM(ng + 2) is true, ...

Comment. In the induction step, we may even assume that CLAIM(ng), CLAIM(ng+ 1), ..., CLAIM(n) are
all true. This is sometimes referred to as strong induction.
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n(n+1)

Example 176. (Gauss, again) For all integers n>1, 1+2+ ... +n= 5

Proof. Again, write s(n) =142+ ... +n.
CLAIM(n) is that s(n) :w.

e (base case) CLAIM(1) is that s(1) :w =1. That's true.

e (induction step) Assume that CLAIM(n) is true (the induction hypothesis) for some fixed n.

s(n+1)=s(n)+ (n+1)= w +(n+1):m2<n+2>
this is where we use
the induction hypothesis
This shows that CLAIM(n + 1) is true as well.
By induction, the formula is therefore true for all integers n > 1. O

Comment. The claim is also true for n =0 (if we interpret the left-hand side correctly).

Example 177. Induction is not only a proof technique but also a common way to define things.

e The factorial n! can be defined inductively (i.e. recursively) by
0'=1, (n+1)!=n!-(n+1).
Comment. This may not seem impressive, because we can “spell out’ n!=1-2-3:-(n — 1)n directly.

e The Fibonacci numbers F,, are defined inductively (i.e. recursively) by
Fo=0, k=1, F,p1=F,+F, 1.

Getting a feeling. Fo=F1+ Fo=1, F3=Fx+ F1 =2, F,=3, F5=5, Fs=8, Fy=13, ...

Comment. Though not at all obvious, there is a way to compute F, directly. Let @:%% 1.618.

Then F,, = |¢"™/+/5]. Try it! For instance, ¢'°/+/5 ~ 55.0036. That seems like magic at first. But
it is the beginning of a general theory (look up, for instance, Binet's formula and C-finite sequences).
Also, recall that we observed that F), 1/ F), are the convergents of the continued fraction for .

Example 178. We are interested in the sums s(n)=1+2+4+ ... +2™
Getting a feeling. s(1)=1+2=3,35(2)=14+2+4=7,s(3)=1+244+8=15, s(4)=31
Conjecture. s(n)=2"1+1—1.

Proof by induction. The statement we want to prove by induction is: s(n)=2"11—1 for all integers n > 1.
e (base case) s(1)=1=2'"1 —1 verifies that the claim is true for n =1.

e (induction step) Assume that s(n)=2"11 —1 is true for some fixed n.
We need to show that s(n +1)=2"12 -1,
IH
Using the induction hypothesis, s(n + 1) = s(n) + 2"t = (2n+1 — 1) y2ntl=on+2 1 QED!

Direct proof. 25(n) =2(14+2+4+...+2")=2+4+ ...+ 2" T =5(n) — 1+ 27! Hence, s(n)=2"11—1.
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