Sketch of Lecture 22

Example 168. Express $\frac{55}{24}$ as a simple continued fraction.

Solution. By the Euclidean algorithm: $55 = 2 \cdot 24 + 7$, $24 = 3 \cdot 7 + 3$, $7 = 2 \cdot 3 + 1$, $3 = 3 \cdot 1 + 0$. Hence, $\frac{55}{24} = [2; 3, 2, 3]$.

Example 169. Determine the first few digits of the simple continued fraction of e.

Solution. e = 2.71828182846....

 $e = 2 + \frac{1}{1/0.7182...} = [2; a_1, a_2, ...]$ where $[a_1; a_2, ...] = 1/0.7182... = 1.3922....$

1/0.3922... = 2.5496..., 1/0.5496... = 1.8194..., 1/0.8194... = 1.2205..., 1/0.2205... = 4.5356...Hence, e = [2; 1, 2, 1, 1, 4, ...]. Computing further, e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, ...] and the pattern continues. Note. Assuming that the pattern does continue, this proves that e is irrational!

Example 170.

- (a) Evaluate the first 4 convergents of [2; 3, 2, 3, 2, ...] (and then, using the next result, compute 3 more convergents).
- (b) Which number is represented by [2; 3, 2, 3, 2, ...]?

Solution.

- (a) $C_0 = 2$
 - $C_{1} = [2; 3] = 2 + \frac{1}{3} = \frac{7}{3} \approx 2.333$ $C_{2} = [2; 3, 2] = 2 + \frac{1}{3 + \frac{1}{2}} = 2 + \frac{2}{7} = \frac{16}{7} \approx 2.286$ $C_{3} = [2; 3, 2, 3] = 2 + \frac{1}{3 + \frac{1}{2 + \frac{1}{3}}} = \frac{55}{24} \approx 2.292$

Using the next result, we compute the convergents $C_n = \frac{p_n}{q_n}$ as follows:

n	-2	-1	0	1	2	3	4	5	6
a_n			2	3	2	3	2	3	2
p_n	0	1	2	7	16	55	126	433	992
q_n	1	0	1	3	7	24	55	189	433
C_n			2	7	16	55	126	433	992
			1	3	7	24	55	189	433

(b) Write x = [2; 3, 2, 3, 2, ...]. Then, $x = 2 + \frac{1}{3 + \frac{1}{2 + \frac{1}{2}}} = 2 + \frac{1}{3 + \frac{1}{x}}$.

The equation $x = 2 + \frac{1}{3 + \frac{1}{x}}$ simplifies to $x - 2 = \frac{x}{3x + 1}$. Further (note that, clearly $x \neq -\frac{1}{3}$ so that $3x + 1 \neq 0$) simplifies to (x - 2)(3x + 1) = x or $3x^2 - 6x - 2 = 0$, which has the solutions $x = \frac{6 \pm \sqrt{36 + 24}}{6} = 1 \pm \sqrt{\frac{5}{3}}$. Since $1 + \sqrt{\frac{5}{3}} \approx 2.291$ and $1 - \sqrt{\frac{5}{3}} \approx -0.291$, we conclude that $[2; 3, 2, 3, 2, ...] = 1 + \sqrt{\frac{5}{3}}$.

Advanced comment. The fractions $\frac{p_n}{q_n}$ are always reduced! Can you see how to conclude that $gcd(p_n, q_n) = 1$ from the relation $p_nq_{n-1} - p_{n-1}q_n = (-1)^n$ (which can be proved by induction)?

We can see this relation quite nicely in the above table because $p_nq_{n-1} - p_{n-1}q_n$ is a 2×2 determinant taken from the rows containing p_n and q_n :

$$\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = -1, \quad \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = 1, \quad \begin{vmatrix} 2 & 7 \\ 1 & 3 \end{vmatrix} = -1, \quad \begin{vmatrix} 7 & 16 \\ 3 & 7 \end{vmatrix} = 1, \quad \begin{vmatrix} 16 & 55 \\ 7 & 24 \end{vmatrix} = -1, \quad ..$$

Theorem 171. The kth convergent of the continued fraction $[a_0; a_1, a_2, ...]$ is

$$C_k = \frac{p_k}{q_k},$$

where p_k and q_k are characterized by

$$\begin{array}{ll} p_k = a_k p_{k-1} + p_{k-2} \\ \text{with } p_{-2} = 0, \quad p_{-1} = 1 \end{array} \quad \text{and} \quad \begin{array}{ll} q_k = a_k q_{k-1} + q_{k-2} \\ \text{with } q_{-2} = 1, \quad q_{-1} = 0 \end{array}$$

Proof. We will prove the claim by induction on k. (More on that technique next time!) First, we check the two base cases k = 0, k = 1 directly: $C_0 = a_0$ and $C_1 = a_0 + \frac{1}{a_1} = \frac{a_0a_1 + 1}{a_1}$. In other words, $p_0 = a_0, q_0 = 1$ and $p_1 = a_0a_1 + 1, q_1 = a_1$. This matches with the values from the recursion Next, we assume that the theorem is true for k = 0, 1, ..., n. In particular,

$$C_n = [a_0; a_1, a_2, ..., a_n] = \frac{p_n}{q_n} = \frac{a_n p_{n-1} + p_{n-2}}{a_n q_{n-1} + q_{n-2}}$$

for any values a_0, a_1, \dots, a_n . Note that $C_{n+1} = [a_0; a_1, a_2, \dots, a_n, a_{n+1}] = \left[a_0; a_1, a_2, \dots, a_n + \frac{1}{a_{n+1}}\right]$. Replacing a_n with $a_n + \frac{1}{a_{n+1}}$, we therefore obtain

$$C_{n+1} = \left[a_0; a_1, a_2, \dots, a_n + \frac{1}{a_{n+1}}\right] = \frac{\left(a_n + \frac{1}{a_{n+1}}\right)p_{n-1} + p_{n-2}}{\left(a_n + \frac{1}{a_{n+1}}\right)q_{n-1} + q_{n-2}}$$
$$= \frac{(a_n a_{n+1} + 1)p_{n-1} + a_{n+1}p_{n-2}}{(a_n a_{n+1} + 1)q_{n-1} + a_{n+1}q_{n-2}}$$
$$= \frac{a_{n+1}(a_n p_{n-1} + p_{n-2}) + p_{n-1}}{a_{n+1}(a_n q_{n-1} + q_{n-2}) + q_{n-1}}$$
$$= \frac{a_{n+1}p_n + p_{n-1}}{a_{n+1}q_n + q_{n-1}} = \frac{p_{n+1}}{q_{n+1}}.$$

The claim now follows by induction.

Example 172. Determine [1; 1, 1, 1, ...] as well as its first 6 convergents. **Solution.** The first few convergents are $C_0 = 1$, $C_1 = [1; 1] = 2$, $C_2 = [1; 1, 1] = 1 + \frac{1}{1 + \frac{1}{\tau}} = \frac{3}{2}$. Since this starts getting tedious, we instead compute the convergents $C_n = \frac{p_n}{q_n}$ recursively:

n	-2	-1	0	1	2	3	4	5	6
a_n			1	1	1	1	1	1	1
p_n	0	1	1	2	3	5	8	13	21
q_n	1	0	1	1	2	3	5	8	12
C_n			1	2	3	5	8	13	21
					2	3	5	8	12

Note that the C_n are quotients of Fibonacci numbers $(F_0 = 0, F_1 = 1, F_2 = 1, ...)!$ To be precise, $C_n = \frac{F_{n+2}}{F_{n+1}}$. Next, let's determine x = [1; 1, 1, 1, ...] by observing that $x = 1 + \frac{1}{1 + \frac$ The equation $x = 1 + \frac{1}{x}$ simplifies to $x^2 - x - 1 = 0$, which has the solutions $x = \frac{1 \pm \sqrt{5}}{2}$. Since $\frac{1-\sqrt{5}}{2}$ is negative (while x is between $C_0 = 1$ and $C_1 = 2$), we conclude $[1; 1, 1, 1, ...] = \frac{1+\sqrt{5}}{2} \approx 1.618$. This is the **golden ratio** φ . **Comment.** Note that we have shown, in particular, $\lim_{n\to\infty} \frac{F_{n+1}}{F_n} = \varphi \approx 1.618$. **Comment.** As noticed in the previous example, the fractions $\frac{p_n}{q_n} = \frac{F_{n+2}}{F_{n+1}}$ are always reduced. In other words, $gcd(F_n, F_{n+1}) = 1$. Moreover, $p_nq_{n-1} - p_{n-1}q_n = (-1)^n$ implies that $F_n^2 - F_{n-1}F_{n+1} = (-1)^{n+1}$.

Example 173. Determine the first few digits of the simple continued fraction of π , as well as the first few convergents.

Solution. $\pi = 3.14159265359..., 1/0.14159... = 7.06251..., 1/0.06251... = 15.99659..., 1/0.99659... = 1.00341..., 1/0.00341... = 292.63459...$

Continuing this way, we find $\pi = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, ...].$

Since π is irrational, this is an infinite continued fraction. No pattern in this fraction is known. We compute the convergents $C_n = \frac{p_n}{q_n}$ as follows:

n	-2	-1	0	1	2	3	4	5	6
a_n			3	7	15	1	292	1	1
p_n	0	1	3	22	333	355	103,993		
q_n	1	0	1	7	106	113	33,102		
C_n			3	$\frac{22}{7}$	$\frac{333}{106}$	$\frac{355}{113}$	$\frac{103,993}{33,102}$		

Comment. For $n \ge 1$, each approximation $x \approx \frac{p_n}{q_n}$ is best possible in the sense that it is better than any other approximation $\frac{a}{b}$ with $b \le q_n$. In other words, if $\left|x - \frac{a}{b}\right| < \left|x - \frac{p_n}{q_n}\right|$, then $b > q_n$.

Comment. Because of this, it is natural to expect that the approximations $\frac{22}{7}$ and $\frac{355}{113}$ are particularly good, because they are followed by much "bigger" fractions.

Indeed, $\frac{22}{7} = 3.1428...$ and $\frac{355}{113} = 3.14159292...$ are very good approximations to π .

Comment. It is known that π is irrational, so that the above "wild" continued fraction will go on forever. Embarrassingly, we do not know whether, for instance, $e + \pi = 5.85987448205...$ is irrational.

 $e + \pi = [5; 1, 6, 7, 3, 21, 2, 1, 2, 2, 1, 1, 2, 3, 3, 2, 5, 2, 1, 1, ...]$

All evidence points to it being irrational, but nobody has a proof. (In particular, we cannot be sure that this continued fraction goes on forever.)