Sketch of Lecture 22

Tue, 11/19/2019

Example 168. Express % as a simple continued fraction.

Solution. By the Euclidean algorithm: 55=[2]-24+7, 24=[3]-7+3, 7=[2]-34+ 1, 3=[3]- 1 +0.
Hence, 22 =[2;3,2, 3]
' 24 ) b ) .
Example 169. Determine the first few digits of the simple continued fraction of e.

Solution. e :.71828182846....

1
e =2+ 5y = (2101, a2, .| where [a15a5,..] =1/0.7182... =[1]3922....

1/0.3922...=[2]5496..., 1/0.5496... =[1]8194..., 1/0.8194... =[ 1]2205..., 1/0.2205... =[ 4] 5356...
Hence, e=12;1,2,1,1,4,...]. Computing further, e=[2;1,2,1,1,4,1,1,6,1,1,8,...] and the pattern continues.
Note. Assuming that the pattern does continue, this proves that e is irrational!

Example 170.

(a) Evaluate the first 4 convergents of [2;3,2,3,2,...] (and then, using the next result, compute
3 more convergents).

(b) Which number is represented by [2;3,2,3,2,...]7

Solution.
(a) Co=2
C1=[2;3]=2+3=1~2333
_ 1. o 1 2 16
Cg—[2,3,2]—2+3+%—2—|—7—7~2.286
Cla—[2: o 1 _ 55
2+ 1

3
Using the next result, we compute the convergents C), = z" as follows:

n

n |—2]—1[0[1]2 [3 [4 |5 [6
an 21312 13 2 [3 |2
pn |0 |1 |27 ]16 |55 | 126 | 433|992
an |1 137 2455 [189 [433
o 2|7 (1655|126 | 433|992
" 11317 | 24| 55 | 189 | 433

(b) Write z=[2;3,2,3,2,...]. Then, z =2+~ L :2+311.

+2+3+1m -
The equation x =2+ 3—1-;3 simplifies to z — 2= :JT

Further (note that, clearly —% so that 3z + 1 0) simplifies to (z —2)(3x + 1) =z or 322 — 62 —2=0,
which has the solutions o = £ V30724 '?:36—” =1+ \/g

Since 1+ \/g ~2.291 and 1 — \/gz ~0.291, we conclude that [2;3,2,3,2,...] =1+ \/g

Advanced comment. The fractions £~

are always reduced! Can you see how to conclude that ged (pn, gn) =1
from the relation pngn—1— Pn—19n = (—1)" (which can be proved by induction)?

We can see this relation quite nicely in the above table because p,gn —1 — Pn—1gn is a 2 X 2 determinant taken
from the rows containing p,, and ¢n:

‘0 1‘:_1, ‘1 2‘:1, ‘2 7‘__1, ‘7 16‘:1’ ‘16 55

01 7 24‘:—1’

Armin Straub 50
straub@southalabama.edu



Theorem 171. The kth convergent of the continued fraction [ag; a1, as, ...] is

Cp=L%,
dk
where p;. and ¢ are characterized by
Dk = QkPk—1 1 Pk—2 and qk = 0kqk—1 1 gk —2
with p_QZO, p_1:1 with q_2:1, q_1:O '

Proof. We will prove the claim by induction on k. (More on that technique next timel!)

First, we check the two base cases k =0, k=1 directly: Co=ag and C1 =ap + ai = %ﬂ In other words,
1 1

po=ao, qo=1 and p1 =apa1 + 1, q1 =a1. This matches with the values from the recursion.

Next, we assume that the theorem is true for k=0, 1, ..., n. In particular,
a —1+Pn—2
Cn = [CL(); a1,0a2, ..., a”I’L] :p_n :Mv
dn andn—1+gn—2
for any values ag, ai, ..., an. Note that Cy, 1 =][ao;a1,a2,...,an,an+1] = [ao; QA1,A2, ..y Ay + ! ] Replacing
. 1 . Ap 41
an with an, + —, we therefore obtain
n41
1
1 (an“v‘ a1 )pn71+pn72
Crnt1= ag; a1, az, .-, an +— = i
n+l (an+ )Qn—1+Qn—2
An 41
_ (anan+1 + l)pnfl + an+4+1Pn—2
(anan+1 + 1)qn71 + an+4+19n —2
_ an+1(anpn,1 +pn72) + Pn—1
an+1(anQn—1 + qn—2) +qn—1
_ An+4+1Pn +pn71 _ Pn+1
an+1qn+ dn—1 adn+1
The claim now follows by induction. ([l

Example 172. Determine [1;1,1,1,...] as well as its first 6 convergents.
Solution. The first few convergents are Co=1, C1=([1;1]=2, Ca=[1;1,1]=1+ Tll = %
T
Since this starts getting tedious, we instead compute the convergents C,, = z" recursively:

n

n [—2]—=1]0{1{2|3 (4|5 |6
an 111|111 |1
pn |0 |1 [1|2(3]|5|8 |13 |21
qn |1 [0 [1[1]2]3]|5 |8 [12
3[5[8[13]21
On 1215035l % |1
Note that the C,, are quotients of Fibonacci numbers (Fp=0, F1 =1, F>=1,...)! To be precise, C),, = %
n41
Next, let's determine z =[1;1, 1, 1,...] by observing that z =1+ ! —=1+ =y
x
1+ ..
The equation z =1 —&—% simplifies to 22 — 2 — 1 =0, which has the solutions = = ! iz\/g.
Since - _2\/3 is negative (while z is between Cp=1 and C1 =2), we conclude [1;1,1,1,...] —1+tvs +2\/g ~1.618.
This is the golden ratio .
Comment. Note that we have shown, in particular, lim,,_ o F;II == 1.618.
Comment. As noticed in the previous example, the fractions £~ = Ente qre always reduced. In other words,

dn n+1
ged (Fp, F41) = 1. Moreover, pngn—1— Pn—19n = (—1)" implies that Fﬁ —Fp_1Fpy1= (—1)"+1.
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Example 173. Determine the first few digits of the simple continued fraction of 7, as well as the
first few convergents.

Solution. 7 :.14159265359..., 1/0.14159... :.06251..., 1/0.06251... = .99659..., 1/0.99659... =
[1]00341..., 1/0.00341... =] 292]63459...

Continuing this way, we find 7 =[3;7,15,1,292,1,1,1,2,1,3,1,14,2,1, ...].

Since 7 is irrational, this is an infinite continued fraction. No pattern in this fraction is known.

We compute the convergents C,, = % as follows:

n [—2[-1]0]1 [2 [3 |4
an 3 15 |1 [292 11
pn |0 |1 [3]22[333[355 103,993
dn |1 1[7 [106 |113 [33,102
c. 5[ 223337355 [ 103,993
7 | 106 | 113 | 33,102

Comment. For n > 1, each approximation x ~ £ is best possible in the sense that it is better than any other
a

approximation >

an
with b < ¢p. In other words, if |m — %| < ‘a: — Pl then b> Qn-

an
Comment. Because of this, it is natural to expect that the approximations ? and i’;; are particularly good,
because they are followed by much “bigger” fractions.

Indeed, ? :28... and % =|3.141592 92... are very good approximations to .

Comment. It is known that 7 is irrational, so that the above “wild"’ continued fraction will go on forever.
Embarrassingly, we do not know whether, for instance, e + m = 5.85987448205... is irrational.
e+m= [5; 1,6,7,3,21,2,1,2,2,1,1,2,3,3,2,5,2,1, 1, ]

All evidence points to it being irrational, but nobody has a proof. (In particular, we cannot be sure that this
continued fraction goes on forever.)
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