
Sketch of Lecture 22 Tue, 11/19/2019

Example 168. Express 55
24 as a simple continued fraction.

Solution. By the Euclidean algorithm: 55= 2 �24+7, 24= 3 � 7+3, 7= 2 � 3+ 1, 3= 3 � 1+0.

Hence, 55
24 = [2; 3; 2; 3].

Example 169. Determine the �rst few digits of the simple continued fraction of e.
Solution. e= 2 :71828182846:::.

e=2+
1

1/0.7182::: = [2; a1; a2; :::] where [a1; a2; :::] = 1/0.7182:::= 1 :3922:::.

1/0.3922:::= 2 :5496:::, 1/0.5496:::= 1 :8194:::, 1/0.8194:::= 1 :2205:::, 1/0.2205:::= 4 :5356:::

Hence, e=[2; 1;2;1;1;4; :::]. Computing further, e=[2;1;2;1;1;4;1;1;6;1;1;8; :::] and the pattern continues.
Note. Assuming that the pattern does continue, this proves that e is irrational!

Example 170.

(a) Evaluate the �rst 4 convergents of [2;3;2;3;2; :::] (and then, using the next result, compute
3 more convergents).

(b) Which number is represented by [2; 3; 2; 3; 2; :::]?

Solution.

(a) C0=2

C1= [2; 3]= 2+
1

3
=
7

3
� 2.333

C2= [2; 3; 2]= 2+
1

3+
1

2

=2+
2

7
=

16
7
� 2.286

C3= [2; 3; 2; 3]= 2+
1

3+
1

2+
1

3

=
55
24
� 2.292

Using the next result, we compute the convergents Cn=
pn
qn

as follows:

n ¡2 ¡1 0 1 2 3 4 5 6
an 2 3 2 3 2 3 2
pn 0 1 2 7 16 55 126 433 992
qn 1 0 1 3 7 24 55 189 433

Cn
2
1

7
3

16
7

55
24

126
55

433
189

992
433

(b) Write x= [2; 3; 2; 3; 2; :::]. Then, x=2+
1

3+
1

2+
1

3+ :::

=2+
1

3+
1

x

.

The equation x=2+
1

3+
1

x

simpli�es to x¡ 2= x

3x+1
.

Further (note that, clearly x=/ ¡1

3
so that 3x+1=/ 0) simpli�es to (x¡2)(3x+1)=x or 3x2¡6x¡2=0,

which has the solutions x= 6� 36+ 24
p

6
=1� 5

3

q
.

Since 1+ 5

3

q
� 2.291 and 1¡ 5

3

q
�¡0.291, we conclude that [2; 3; 2; 3; 2; :::] = 1+

5

3

q
.

Advanced comment. The fractions pn
qn

are always reduced! Can you see how to conclude that gcd (pn; qn)= 1

from the relation pnqn¡1¡ pn¡1qn=(¡1)n (which can be proved by induction)?
We can see this relation quite nicely in the above table because pnqn¡1¡ pn¡1qn is a 2� 2 determinant taken
from the rows containing pn and qn:�������� 0 1

1 0

��������=¡1; �������� 1 2
0 1

��������=1;

�������� 2 7
1 3

��������=¡1; �������� 7 16
3 7

��������=1;

�������� 16 55
7 24

��������=¡1; :::
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Theorem 171. The kth convergent of the continued fraction [a0; a1; a2; :::] is

Ck=
pk
qk
;

where pk and qk are characterized by

pk= akpk¡1+ pk¡2
with p¡2=0; p¡1=1

and qk= akqk¡1+ qk¡2
with q¡2=1; q¡1=0

:

Proof. We will prove the claim by induction on k. (More on that technique next time!)

First, we check the two base cases k=0, k=1 directly: C0= a0 and C1= a0+
1

a1
=
a0a1+1

a1
. In other words,

p0= a0, q0=1 and p1= a0a1+1, q1= a1. This matches with the values from the recursion.
Next, we assume that the theorem is true for k=0; 1; :::; n. In particular,

Cn= [a0;a1; a2; :::; an] =
pn
qn

=
anpn¡1+ pn¡2
anqn¡1+ qn¡2

;

for any values a0; a1; :::; an. Note that Cn+1=[a0;a1; a2; :::; an; an+1]=
h
a0;a1; a2; :::; an+

1

an+1

i
. Replacing

an with an+
1

an+1
, we therefore obtain

Cn+1=

�
a0; a1; a2; :::; an+

1
an+1

�
=

�
an+

1

an+1

�
pn¡1+ pn¡2�

an+
1

an+1

�
qn¡1+ qn¡2

=
(anan+1+1)pn¡1+ an+1pn¡2
(anan+1+1)qn¡1+ an+1qn¡2

=
an+1(anpn¡1+ pn¡2) + pn¡1
an+1(anqn¡1+ qn¡2)+ qn¡1

=
an+1pn+ pn¡1
an+1qn+ qn¡1

=
pn+1
qn+1

:

The claim now follows by induction. �

Example 172. Determine [1; 1; 1; 1; :::] as well as its �rst 6 convergents.

Solution. The �rst few convergents are C0=1, C1= [1; 1]= 2, C2= [1; 1; 1]= 1+
1

1+
1

1

=
3

2
.

Since this starts getting tedious, we instead compute the convergents Cn=
pn
qn

recursively:

n ¡2 ¡1 0 1 2 3 4 5 6
an 1 1 1 1 1 1 1
pn 0 1 1 2 3 5 8 13 21
qn 1 0 1 1 2 3 5 8 12

Cn 1 2
3
2

5
3

8
5

13
8

21
12

Note that the Cn are quotients of Fibonacci numbers (F0=0; F1=1; F2=1; :::)! To be precise, Cn=
Fn+2
Fn+1

.

Next, let's determine x= [1; 1; 1; 1; :::] by observing that x=1+
1

1+
1

1+ :::

=1+
1

x
.

The equation x=1+
1

x
simpli�es to x2¡x¡ 1=0, which has the solutions x= 1� 5

p

2
.

Since 1¡ 5
p

2
is negative (while x is between C0=1 and C1=2), we conclude [1; 1; 1; 1; :::] = 1+ 5

p

2
� 1.618.

This is the golden ratio '.

Comment. Note that we have shown, in particular, limn!1
Fn+1
Fn

= '� 1.618.

Comment. As noticed in the previous example, the fractions pn
qn
=

Fn+2
Fn+1

are always reduced. In other words,

gcd (Fn; Fn+1)= 1. Moreover, pnqn¡1¡ pn¡1qn=(¡1)n implies that Fn2¡Fn¡1Fn+1=(¡1)n+1.
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Example 173. Determine the �rst few digits of the simple continued fraction of �, as well as the
�rst few convergents.
Solution. �= 3 :14159265359:::, 1/0.14159:::= 7 :06251:::, 1/0.06251:::= 15 :99659:::, 1/0.99659:::=
1 :00341:::, 1/0.00341:::= 292 :63459:::

Continuing this way, we �nd �= [3; 7; 15; 1; 292; 1; 1; 1; 2; 1; 3; 1;14; 2; 1; :::].
Since � is irrational, this is an in�nite continued fraction. No pattern in this fraction is known.
We compute the convergents Cn=

pn
qn

as follows:

n ¡2 ¡1 0 1 2 3 4 5 6
an 3 7 15 1 292 1 1
pn 0 1 3 22 333 355 103;993 ::: :::
qn 1 0 1 7 106 113 33; 102 ::: :::

Cn 3
22
7

333
106

355
113

103;993
33; 102

::: :::

Comment. For n> 1, each approximation x� pn
qn

is best possible in the sense that it is better than any other

approximation a

b
with b6 qn. In other words, if

����x¡ a

b

����< ������x¡ pn
qn

������, then b> qn.

Comment. Because of this, it is natural to expect that the approximations 22
7

and 355
113 are particularly good,

because they are followed by much �bigger� fractions.

Indeed, 22
7
= 3.14 28::: and 355

113
= 3.141592 92::: are very good approximations to �.

Comment. It is known that � is irrational, so that the above �wild� continued fraction will go on forever.
Embarrassingly, we do not know whether, for instance, e+ �= 5.85987448205::: is irrational.
e+�= [5; 1; 6; 7; 3;21; 2; 1; 2; 2; 1; 1; 2; 3; 3; 2; 5; 2; 1; 1; :::]
All evidence points to it being irrational, but nobody has a proof. (In particular, we cannot be sure that this
continued fraction goes on forever.)
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