
Sketch of Lecture 20 Tue, 11/5/2019

Review. (Wilson's theorem) If p is a prime, then (p¡ 1)!�¡1 (mod p).

Corollary 155. n is a prime if and only if (n¡ 1)!�¡1 (modn).

Proof. It only remains to show that, if n is not a prime, then (n¡ 1)!�/ ¡1 (modn).
But this is obvious, if we realize that ¡1 is invertible modulo n but (n¡ 1)! is not. (Why?!) �

Review. A residue a is invertible modulo n if and only if gcd (a; n)= 1.
Comment. Unfortunately, this criterion is not a a good practical primality test. That's because computing the
factorial is as much work as trial division by all numbers 2; :::; n¡ 1.
Comment. In fact, can you see why (n¡ 1)!� 0 (modn) if n> 4 is not a prime?
If we can write n= ab where a; b > 1 and a=/ b, then (n¡ 1)! = ::: � a � ::: � b � :::� 0 (modn). This works (for
instance, we can let a be the smallest divisor of n) unless n= p2.
If n= p2, then (p2¡ 1)!= ::: � p � ::: � (2p) � :::� 0 (mod p2). Unless 2p> p2¡ 1, which excludes p=2 (n=4).

17 Euler's criterion for quadratic residues

Example 156. List the �rst few primes for which 2 (respectively, ¡1) is a quadratic residue.

Solution.

p 2 3 5 7 11 13 17 19 23
is 2 a quadratic residue mod p? yes: 02 no no yes: 32 no no yes: 62 no yes: 52

is ¡1 a quadratic residue mod p? yes: 12 no yes: 22 no no yes: 52 yes: 42 no no
p (mod8) 2 3 5 7 3 5 1 3 7

Advanced observations. It turns out that 2 is a quadratic residue modulo an odd prime p if and only if
p��1 (mod8). Note that every prime (except 2) takes one of the four values 1; 3; 5; 7 modulo 8.
Similarly, ¡1 is a quadratic residue modulo an odd prime p if and only if p � 1; 5 (mod 8). Equivalently,
p� 1 (mod4). We will actually prove this second observation below.

Recall. We observed that, for a given odd prime p, half of the values 1; 2; :::; p¡ 1 are squares.
In other words, there is a 50% chance that a random residue is a square modulo a prime p. It therefore is
reasonable to expect that a value like 2 or ¡1 (random residues in the sense that it is unclear whether they are
squares modulo p) is a square for �half� of the primes. This is what we are observing.
Advanced comment. We are just scratching the surface of some amazing results in number theory which go
under the heading of quadratic reciprocity. For instance, suppose p; q are odd primes, at least one of which is
�1 (mod 4). Then, p is a quadratic residue modulo q if and only if q is a quadratic residue modulo p. Check
out Chapter 9 in our book for more details.

Theorem 157. (Euler's criterion) Let p be an odd prime and a an invertible residue modulo
p. Then a is a quadratic residue modulo p if and only if a(p¡1)/2� 1.

Important note. Since x= a(p¡1)/2 solves x2� 1 (mod p) (why?!) it follows that a(p¡1)/2��1 (mod p).
Comment. Our proof below uses the idea from our earlier proof of Wilson's theorem and extends it. It is a nice
illustration how proofs can add value far beyond just verifying a claim.
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Proof. We proceed similar to our proof of Wilson's theorem. Note that (p¡ 1)! = 1 � 2 � ::: � (p¡ 1) modulo p
is the product of all invertible values modulo p. This time, we pair each x in this product with ax¡1 modulo p,
and use x � (ax¡1)� a (mod p).
Again, we have to be careful about elements that might pair with themselves. Because p is a prime, the
congruence x� ax¡1 (mod p) or, equivalently, x2� a (mod p) either has no solution (if a is not a quadratic
residue) or two solutions x��b (mod p) (if a is a quadratic residue).

� If a is not a quadratic residue, then we have (p¡ 1)/2 pairs and, hence, (p¡ 1)!� a(p¡1)/2.

� If a is a quadratic residue, then we have (p¡3)/2 pairs as well as the unpaired residues b and¡b. Hence,
(p¡ 1)!� a(p¡3)/2 � b � (¡b)�¡a(p¡1)/2. [Recall that b2� a.]

On the other hand, by Wilson's theorem, (p¡ 1)!�¡1 (mod p), so that

a(p¡1)/2�
�
¡1; if a is not a quadratic residue (mod p);
1; if a is a quadratic residue (mod p):

�

Alternative proof. If a is a quadratic residue modulo p then, by de�nition, there is an x such that x2�a (modp).
By Fermat's little theorem, a(p¡1)/2� (x2)(p¡1)/2=xp¡1� 1 (mod p).
It therefore remains to consider the case when a is not a quadratic residue modulo p. A slick argument can be
based on the fact that a polynomial of degree k can have at most k roots modulo a prime (we only discussed
this for k=2). In particular, x(p¡1)/2�1 (modp) can have at most (p¡ 1)/2 solutions. But we already know
(p¡ 1)/2 solutions, namely all quadratic residues modulo p. Hence, if a is not a quadratic residue modulo p,
then we cannot have a(p¡1)/2� 1 (mod p).

Example 158. Use Euler's criterion for quadratic residues to determine whether 5 is a quadratic
residue modulo 19. Likewise, is 5 is a quadratic residue modulo 37?
Solution.

� We compute 59 (mod19) using binary exponentiation: 52� 6, 54� 62�¡2, 58� 4 (mod19) so that
59� 5 � 4� 1 (mod19). Hence, by Euler's criterion, 5 is a quadratic residue modulo 19.

� We compute 518 (mod37) using binary exponentiation: 52�¡12, 54�144�¡4, 58� 16, 516�256�
¡3 (mod37) so that 518� (¡12) � (¡3)�¡1 (mod37). Hence, by Euler's criterion, 5 is not a quadratic
residue modulo 37.

Corollary 159. Let p be an odd prime. Then ¡1 is a quadratic residue modulo p if and only if
p� 1 (mod 4).

In other words, the quadratic congruence x2�¡1 (mod p) has a solution if and only if p� 1 (mod4).

Proof. ¡1 is a quadratic residue modulo p

() (¡1)(p¡1)/2� 1 (mod p) [by Euler's criterion]

() (¡1)(p¡1)/2=1

() (p¡ 1)/2 is even
() p� 1 (mod4) �

Comment. In the case p=2, which we excluded from the discussion, x2�¡1 (mod2) has the solution x=1.
On the other hand, x2�¡1 (mod4) has no solution.
Advanced comment. If n=n1n2 for relatively prime n1; n2, then x2�¡1 (modn) has a solution if and only
if both x2�¡1 (modn1) and x2�¡1 (modn2) has a solution. You are right: this follows immediately from
the Chinese remainder theorem.
In general, the quadratic congruence x2 � ¡1 (mod n) has a solution if and only if the prime factorization
n=2r0p1

k1���prkr has the property that pi� 1 (mod4) and r02f0; 1g.
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Example 160. (extra) Find x such that x2�¡1 (mod p) for p= 29 (and for p= 17).
Solution. The crucial observation is that, if a is not a quadratic residue modulo p, in which case a(p¡1)/2�¡1
(by Euler's criterion), then x=a(p¡1)/4 satis�es x2�¡1. Exactly half of the nonzero residues are not quadratic,
so every second a will do the trick (and we can just try various a until we �nd one with a(p¡1)/2�¡1 (modp)).

� p= 29: we try a=2 and �nd 214�¡1, so that 2 is not a quadratic residue modulo 29.
Consequently, x=27� 12 (mod29) satis�es x2�¡1 (mod29). (Check it!)

� p= 17: we try a=2 and �nd 28� 1, so that 2 is a quadratic residue modulo 17.
We next try a=3 and �nd 38�¡1, so that 3 is a quadratic residue modulo 17.
Consequently, x=34�¡4 (mod17) satis�es x2�¡1 (mod17). Of course, the simpler +4 also works.

Comment. We actually do not know a way of �nding a non-quadratic residue that is better than our trial-and-
error approach. (We don't even know any (provably) polynomial time algorithm; the trial-and-error method is
polynomial time if the Riemann hypothesis is true.)
Advanced comment. Variants of this idea (due to Lagrange, Legendre, Tonelli and others) can be used to
compute other �square roots� modulo p. Suppose that, for given quadratic residue a, we want to solve x2 �
a (mod p). (In other words, we are interested in the square root of a.)

� If p� 3 (mod4), then x=�a(p+1)/4.
Why? x2= a(p+1)/2= a(p¡1)/2 � a� 1 � a (mod p)
[The reason we need p� 3 (mod4) is so that (p+1)/4 is an integer.]

� For other primes, one can extend this idea and proceed iteratively. See, for instance, the Tonelli�Shanks
algorithm:
https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm
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