
Sketch of Lecture 18 Tue, 10/29/2019

Example 139. Fermat's little theorem can be stated in the slightly stronger form:

n is a prime () an¡1� 1 (modn) for all a2f1; 2; :::; n¡ 1g

Why? Fermat's little theorem covers the �=)� part. The �(=� part is a direct consequence of the fact that, if
n is composite with divisor d, then dn¡1�/ 1 (modn). (Why?!)
Review. In the second part, we used that the contrapositive of A=)B is the logically equivalent statement
:B=):A.

Fermat primality test
Input: number n and parameter k indicating the number of tests to run
Output: �not prime� or �likely prime�
Algorithm:

Repeat k times:
Pick a random number a from f2; 3; :::; n¡ 2g.
If an¡1�/ 1 (modn), then stop and output �not prime�.

Output �likely prime�.

If an¡1� 1 (modn) although n is composite, then a is called a Fermat liar modulo n.

On the other hand, if an¡1�/ 1 (modn), then n is composite and a is called a Fermat witness modulo n.
Flaw. There exist certain composite numbers n (see De�nition 141) for which every a is a Fermat liar (or reveals
a factor of n). For this reason, the Fermat primality test should not be used as a general test for primality. That
being said, for very large random numbers, it is exceedingly unlikely to meet one of these troublesome numbers,
and so the Fermat test is indeed used for the purpose of randomly generating huge primes (for instance in PGP).
In fact, in that case, we can even always choose a=2 and k=1 with virtual certainty of not messing up.
There do exist extensions of the Fermat primality test which solve these issues.
[For instance, Miller-Rabin, which checks whether an¡1 � 1 (mod n) but also checks whether values like
a(n¡1)/2 are congruent to �1.]
Advanced comment. If n is composite but not an absolute pseudoprime (see De�nition 141), then at least half
of the values for a satisfy an¡1�/ 1 (modn) and so reveal that n is not a prime. This is more of a theoretical
result: for most large composite n, almost every a (not just half) will be a Fermat witness.

Example 140. Suppose we want to determine whether n= 221 is a prime. Simulate the Fermat
primality test for the choices a= 38 and a= 24.
Solution.

� First, maybe we pick a= 38 randomly from f2; 3; :::; 219g.
We then calculate that 38220� 1 (mod221). So far, 221 is behaving like a prime.

� Next, we might pick a= 24 randomly from f2; 3; :::; 219g.
We then calculate that 24220� 81�/ 1 (mod221). We stop and conclude that 221 is not a prime.

Important comment. We have done so without �nding a factor of n. (To wit, 221= 13 � 17.)
Comment. Since 38 was giving us a false impression regarding the primality of n, it is called a Fermat liar
modulo 221. Similarly, we say that 221 is a pseudoprime to the base 38.
On the other hand, we say that 24 was a Fermat witness modulo 221.
Comment. In this example, we were actually unlucky that our �rst �random� pick was a Fermat liar: only 14 of
the 218 numbers (about 6.4%) are liars. As indicated above, for most large composite numbers, the proportion
of liars will be exceedingly small.
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Somewhat suprisingly, there exist composite numbers n with the following disturbing property:
every residue a is a Fermat liar or gcd (a; n)> 1.

This means that the Fermat primality test is unable to distinguish n from a prime, unless the randomly picked
number a happens to reveal a factor (namely, gcd(a;n)) of n (which is exceedingly unlikely for large numbers).
[Recall that, for large numbers, we do not know how to �nd factors even if that was our primary goal.]

Such numbers are called absolute pseudoprimes:

De�nition 141. A composite positive integer n is an absolute pseudoprime (or Carmichael
number) if an¡1� 1 (modn) holds for any integer a with gcd (a; n)= 1.

The �rst few are 561; 1105; 1729; 2465; ::: (it was only shown in 1994 that there are in�nitely many of them).
These are very rare, however: there are 43 absolute pseudoprimes less than 106. (Versus 78; 498 primes.)

Example 142. Show that 561 is an absolute pseudoprime.

Solution. We need to show that a560� 1 (mod561) for all invertible residues a modulo 561.
Since 561=3 � 11 � 17, a560� 1 (mod561) is eqivalent to a560� 1 (mod p) for each of p=3; 11;17.
By Fermat's little theorem, we have a2� 1 (mod3), a10� 1 (mod11), a16� 1 (mod17). Since 2;10;16 each
divide 560, it follows that indeed a560� 1 (mod p) for p=3; 11; 17.
Comment. Korselt's criterion (1899) states that what we just observed in fact characterizes absolute pseudo-
primes. Namely, a composite number n is an absolute pseudoprime if and only if n is squarefree, and for all
primes p dividing n, we also have p¡ 1jn¡ 1.

Theorem 143. (Korselt's Criterion) A composite positive integer n is an absolute pseudoprime
if and only if n is squarefree and (p¡ 1)j(n¡ 1) for any prime divisor p of n.

Proof. Here, we will only consider the �if� part (the �only if� part is also not hard to show but the typical proof
requires a little more insight into primitive roots than we currently have).
To that end, assume that n is squarefree and that (p¡ 1)j(n¡ 1) for any prime divisor p of n. Let a be any
integer with gcd (a; n)= 1. We will show that an¡1� 1 (modn).
n being squarefree means that its prime factorization is of the form n = p1�p2���pd for distinct primes pi
(this is equivalent to saying that there is no integer m > 1 such that m2jn). By Fermat's little theorem
api¡1� 1 (mod pi) and, since (pi¡1)j(n¡1), we have an¡1�1 (modpi) for all pi. It therefore follows from
the Chinese remainder theorem that an¡1� 1 (modn). �

Comment. Modulo a prime p, Fermat's little theorem implies that ap� a (mod p) for any integer a. (Why?!)
It therefore follows from the above argument that, for an absolute pseudoprime n, we have an� a (modn) for
any integer a (and this property characterizes absolute pseudoprimes).

Example 144. Using Sage, determine all numbers n up to 5000, for which 2 is a Fermat liar.

Sage] def is_fermat_liar(x, n):
return not is_prime(n) and power_mod(x, n-1, n) == 1

Sage] [ n for n in [1..5000] if is_fermat_liar(2, n) ]

[341;561; 645; 1105; 1387; 1729; 1905; 2047;2465; 2701; 2821; 3277;4033; 4369; 4371;4681]

Even if you have never written any code, you can surely �gure out what's going on!
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Example 145. Playing with the prime number theorem in Sage:

Sage] prime_pi(10)

4

Sage] plot(prime_pi(x), 2, 200)
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Sage] plot([prime_pi(x),x/ln(x)], 2, 200)
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Sage] plot([prime_pi(x)/(x/ln(x)), 1], 2, 2000)
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Comment. As the �nal plot suggests, the quotient of �(x) and x/ln(x) indeed approaches 1 from above. This
is slightly stronger than the PNT, which only claims that the quotient approaches 1.
In particular, as the previous plot suggests, for large x, x/ ln(x) is always an underestimate for �(x) (though
looking at a plot like this can be very misleading).
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