
Sketch of Lecture 17 Thu, 10/24/2019

Example 134. Compute 329 (mod 77) using the Chinese remainder theorem.

Solution. We determine x=329 both modulo 7 and 11:

� 329� 35� 3 � 4�¡2 (mod7) [Here, we used 29� 5 (mod �(7)) and 32� 2, 34� 4 (mod7).]

� 329� 3¡1� 4 (mod11) [Here, we proceeded unusually and used 29�¡1 (mod�(11)).]

Therefore, x�¡2 (mod7) and x� 4 (mod11).
Using the Chinese remainder theorem, x=¡2 � 11 � 11mod7

¡1

2

+4 � 7 � 7mod11
¡1

¡3

�¡128� 26 (mod77).

Comment. Alternatively, we can proceed modulo n= 77 directly and use binary computation. However, if we
already know the factorization of n (that's a big �if� for large n), then applying the CRT is a little faster.

13.1 More on Euler's theorem

Example 135. Compute 7100 (mod60).
Solution. �(60) = �(22)�(3)�(5) = 2 � 2 � 4 = 16. Since gcd (7; 60) = 1, we obtain that 716 � 1 (mod60) by
Euler's theorem. Since 100� 4 (mod16), we have 7100� 74 (mod60).
It remains to notice that 72= 49�¡11 and hence 74� (¡11)2= 121� 1 (mod60). So, 7100� 1 (mod60).
Comment. See the next example, which shows that we actually have a4� 1 (mod60) for all integers a coprime
to 60.

Example 136. Euler's theorem doesn't necessarily provide an optimal exponent. For instance,
show that a4� 1 (mod 60) for all integers a coprime to 60.
Note. Since �(60)= �(22)�(3)�(5)= 2 � 2 � 4= 16, Euler's theorem shows that a16� 1 (mod60).

Proof. By the Chinese remainder theorem, a4� 1 (mod60) is equivalent to

a4� 1 (mod4); a4� 1 (mod3); a4� 1 (mod5):

All three of these congruences are true:

� a4� 1 (mod5) is true by Fermat's little theorem.

� a4� 1 (mod3) is true, because a2� 1 (mod3) by Fermat's little theorem.

� a4� 1 (mod4) is true, because a2� 1 (mod4) by Euler's theorem (�(4)= 2).

(Note that a is coprime to 60 if and only if a is coprime to each of 4, 3, 5.) �
A brute-force veri�cation in Sage. The following computation also proves the claim. Even if you have never
coded yourself, you can surely �gure out what the following code is doing:

Sage] [1..59]

[1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32; 33;
34; 35; 36; 37;38; 39; 40; 41;42; 43; 44; 45;46; 47; 48; 49;50; 51; 52; 53;54; 55; 56; 57;58; 59]

Sage] [ x for x in [1..59] if gcd(x,60)==1 ]

[1; 7; 11;13; 17; 19; 23;29; 31; 37; 41;43; 47; 49; 53;59]

Sage] [ x^4 % 60 for x in [1..59] if gcd(x,60)==1 ]

[1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1]
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Example 137. As in the previous example, show that a6� 1 (mod42) for all integers a coprime
to 42.
Note. Since �(42)= �(2)�(3)�(7)=1 � 2 � 6= 12, Euler's theorem shows that a12� 1 (mod42).

Proof. By the Chinese remainder theorem, a6� 1 (mod42) is equivalent to

a6� 1 (mod2); a6� 1 (mod3); a6� 1 (mod7):

But these congruences all follow from Fermat's little theorem (because 6 is a multiple of 2¡ 1 = 1, 3¡ 1 = 2
and 7¡ 1=6)! (Note that a is coprime to 42 if and only if a is coprime to each of 2, 3, 7.) �

Advanced. Based on these ideas, can you formulate a general strengthening of Euler's theorem?
https://en.wikipedia.org/wiki/Carmichael_function

14 Primality testing

Recall that it is extremely di�cult to factor large integers (this is the starting point for many
cryptosystems). Surprisingly, it is much simpler to tell if a number is prime.

Example 138. The following is the number mentioned earlier, for which RSA Laboratories, until
2007, o�ered $100,000 to the �rst one to factorize it. To this day, nobody has been able to do so.
Has the thought crossed your mind that the challengers might be tricking everybody by choosing M to be a
huge prime that cannot be factored further? Well, we'll talk more about primality testing soon. But we can
actually quickly convince ourselves thatM cannot be a prime. If M was prime then, by Fermat's little theorem,
2M¡1 � 1 (modM). Below, we compute 2M¡1 (modM) and �nd that 2M¡1 �/ 1 (modM). This proves
that M is not a prime. It doesn't bring us any closer to factoring it though.
Comment. Ponder this for a while. We can tell that a number is composite without �nding its factors. Both
sides to this story (�rst, being able to e�ciently tell whether a number is prime, and second, not being able to
factor large numbers) are of vital importance to modern cryptography.

Sage] rsa = Integer("135066410865995223349603216278805969938881475605667027524485143851\
526510604859533833940287150571909441798207282164471551373680419703\
964191743046496589274256239341020864383202110372958725762358509643\
110564073501508187510676594629205563685529475213500852879416377328\
533906109750544334999811150056977236890927563")

Sage] power_mod(2, rsa-1, rsa)

12093909443203361586765059535295699686754009846358895123890280836755673393220205933853\
34853414711666284196812410728851237390407107713940535284883571049840919300313784787895\
22602961512328487951379812740630047269392550033149751910347995109663412317772521248297\
950196643140069546889855131459759160570963857373851

Comment. Just for giggles, let us emphasize once more the need to compute 2N¡1 (modN) without actually
computing 2N¡1. Take, for instance, the 1024 bit RSA challenge number N = 135:::563 in this example. The
number 2N¡1 itself has N ¡ 1� 21024� 10308.3 binary digits. It is often quoted that the number of particles
in the visible universe is estimated to be between 1080 and 10100. Whatever these estimates are worth, our
number has WAY more digits (!) than that. Good luck writing it out! [Of course, the binary digits are a single
1 followed by all zeros. However, we need to further compute with that!]
Comment. There is nothing special about 2. You could just as well use, say, 3.
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