Review. $x \pmod{n}$ is a primitive root.

 $\iff \text{The (multiplicative) order of } x \pmod{n} \text{ is } \phi(n). \qquad (\text{That is, the order is as large as possible.})$ $\iff x, x^2, \dots, x^{\phi(n)} \text{ is a list of all invertible residues modulo } n.$

Lemma 123. If $a^r \equiv 1 \pmod{n}$ and $a^s \equiv 1 \pmod{n}$, then $a^{\gcd(r,s)} \equiv 1 \pmod{n}$.

Proof. By Bezout's identity, there are integers x, y such that xr + ys = gcd(r, s). Hence, $a^{\text{gcd}(r,s)} = a^{xr+ys} = a^{xr}a^{ys} = (a^r)^x (a^s)^y \equiv 1 \pmod{n}$.

Corollary 124. The multiplicative order of *a* modulo *n* divides $\phi(n)$.

Proof. Let k be the multiplicative order, so that $a^k \equiv 1 \pmod{n}$. By Euler's theorem $a^{\phi(n)} \equiv 1 \pmod{n}$. The previous lemma shows that $a^{\gcd(k,\phi(n))} \equiv 1 \pmod{n}$. But since the multiplicative order is the smallest exponent, it must be the case that $\gcd(k,\phi(n)) = k$. Equivalently, k divides $\phi(n)$.

Example 125. Compute the multiplicative order of 2 modulo 7, 11, 9, 15. In each case, is 2 a primitive root?

Solution.

- 2 (mod 7): $2^2 \equiv 4, 2^3 \equiv 1$. Hence, the order of 2 modulo 7 is 3. Since the order is less than $\phi(7) = 6, 2$ is not a primitive root modulo 7.
- 2 (mod 11): Since φ(11) = 10, the only possible orders are 2, 5, 10. Hence, checking that 2² ≠ 1 and 2⁵ ≠ 1 is enough to conclude that the order must be 10.
 Since the order is equal to φ(11) = 10, 2 is a primitive root modulo 11.
- 2 (mod 9): Since φ(9) = 6, the only possible orders are 2, 3, 6. Hence, checking that 2² ≠ 1 and 2³ ≠ 1 is enough to conclude that the order must be 6. (Indeed, 2² ≡ 4, 2³ ≡ 8, 2⁴ ≡ 7, 2⁵ ≡ 5, 2⁶ ≡ 1.) Since the order is equal to φ(9) = 6, 2 is a primitive root modulo 9.
- The order of 2 (mod 15) is 4 (a divisor of φ(15) = 8).
 2 is not a primitive root modulo 15. In fact, there is no primitive root modulo 15.

Comment. It is an open conjecture to show that 2 is a primitive root modulo infinitely many primes. (This is a special case of Artin's conjecture which predicts much more.)

Advanced comment. There exists a primitive root modulo n if and only if n is of one of $1, 2, 4, p^k, 2p^k$ for some odd prime p.

Example 126. Is there a primitive root modulo 8?

Solution. Since $\phi(8) = 8 - 4 = 4$, the question is whether there is a residue of order 4.

The invertible residues are $\pm 1, \pm 3$. Obviously, 1 has order 1 and -1 has order 2. Since $(\pm 3)^2 \equiv 1 \pmod{8}$, the residues ± 3 have order 2 as well. There is no primitive root.

Lemma 127. Suppose $x \pmod{n}$ has (multiplicative) order k.

- (a) $x^a \equiv 1 \pmod{n}$ if and only if $k \mid a$.
- (b) $x^a \equiv x^b \pmod{n}$ if and only if $a \equiv b \pmod{k}$.
- (c) x^a has order $\frac{k}{\gcd(k,a)}$.

Proof.

- (a) "⇒": By Lemma 123, x^k ≡ 1 and x^a ≡ 1 imply x^{gcd(k,a)} ≡ 1 (mod n). Since k is the smallest exponent, we have k = gcd(k, a) or, equivalently, k|a.
 "⇐": Obviously, if k|a so that a = kb, then x^a = (x^k)^b ≡ 1 (mod n).
- (b) Since x is invertible, $x^a \equiv x^b \pmod{n}$ if and only if $x^{a-b} \equiv 1 \pmod{n}$ if and only if k|(a-b).
- (c) By the first part, $(x^a)^m \equiv 1 \pmod{n}$ if and only if $k \mid am$. The smallest such m is $m = \frac{k}{\gcd{(k, a)}}$. \Box

Example 128. Redo Example 122, starting with the knowledge that 3 is a primitive root.

That is, determine the orders of each residue modulo 7.

Solution.

residues	1	2	3	4	5	6
3^a	3^{0}	3^{2}	3^{1}	3^{4}	3^5	3^{3}
order= $\frac{6}{\gcd(a,6)}$	$\frac{6}{6}$	$\frac{6}{2}$	$\frac{6}{1}$	$\frac{6}{2}$	$\frac{6}{1}$	$\frac{6}{3}$