
Sketch of Lecture 14 Tue, 10/15/2019

Example 115. Recall that Fermat's last theorem states that xn+ yn= zn does not have any
solutions in positive integers if n> 3.
However, in a Simpson's episode, Homer discovered that

178212+ 184112 �=� 192212:

If you check this on an old calculator it might con�rm the equation. However, the equation is not correct, though
it is �nearly�: 178212+ 184112¡ 192212�¡7.002 �1029.
Why would that count as �nearly�? Well, the smallest of the three numbers, 178212� 1.025 � 1039, is bigger
by a factor of more than 109. So the di�erence is extremely small in comparison.
Relative errors. If you estimate x with y, the absolute error is jx ¡ y j. However, for many applications, the

relative error
������x¡ y

x

������ is much more important.

Check! Show that Homer is wrong by hand by looking at this modulo 13. (Though modulo 2 is even easier!)

Solution. By Fermat's little theorem, we have x12� 1 (mod13) for all x not divisible by 13. Our numbers are
not divisible by 13. Hence, 178212+ 184112� 2 (mod13) but 192212� 1 (mod13), so they cannot be equal.

http://www.bbc.com/news/magazine-24724635

12 Euler's theorem

Theorem 116. (Euler's theorem) If n> 1 and gcd (a; n)= 1, then a�(n)� 1 (modn).

Before, we prove Euler's theorem, let us review Fermat's little theorem, which is the special case of prime n.
Fermat's little theorem. If p is prime and p - a, then ap¡1� 1 (mod p).

Proof. (Fermat's little theorem) The �rst p¡ 1 multiples of a,

a; 2a; 3a; :::; (p¡ 1)a

are all di�erent modulo p. Clearly, none of them is divisible by p.
Consequently, these values must be congruent (in some order) to the values 1; 2; :::; p¡ 1 modulo p. Thus,

a � 2a � 3a � ::: � (p¡ 1)a� 1 � 2 � 3 � ::: � (p¡ 1) (mod p):

Cancelling the common factors (allowed because p is prime!), we get ap¡1� 1 (mod p). �

Proof. (Euler's theorem) Let m1; m2; :::; md be the values among f1; 2; :::; n ¡ 1g which are coprime to n.
Note that d= �(n) and that these are precisely the invertible residues modulo n. Observe that the residues

am1; am2; am3; :::; amd

are all invertible (why?!) modulo n and di�erent from each other.
Consequently, these values must be congruent (in some order) to the values m1;m2; :::;md modulo n. Thus,

am1 �am2 �am3 � ::: � amd�m1 �m2 �m3 � ::: �md (modn):

Cancelling the common factors (allowed because the mi are invertible modn), we get ad� 1 (modn). �
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Example 117. What are the last two (decimal) digits of 34242?

Solution. We need to determine 34242 (mod100). �(100) = �(22) � �(52)= (4¡ 2)(25¡ 5)= 40.

Since gcd (3; 100)= 1 and 4242� 2 (mod40), Euler's theorem shows that 34242� 32=9 (mod100).

Example 118. Compute 7100 (mod60).
Solution. �(60) = �(22)�(3)�(5) = 2 � 2 � 4 = 16. Since gcd (7; 60) = 1, we obtain that 716 � 1 (mod60) by
Euler's theorem. Since 100� 4 (mod16), we have 7100� 74 (mod60).
It remains to notice that 72= 49�¡11 and hence 74� (¡11)2= 121� 1 (mod60). So, 7100� 1 (mod60).

13 Multiplicative order and primitive roots

Example 119. (warmup) Compute the powers of 2 modulo 11.
Solution. 20= 1; 21= 2; 22= 4; 23= 8; 24� 5; 25� 2 � 5 = 10; 26� 2 � 10� 9; 27� 2 � 9� 7; 28� 2 � 7� 3;
29� 2 � 3=6; 210� 2 � 6� 1, and now the numbers we get will repeat:::
Note. By Fermat's little theorem, it was clear from the beginning that 210 � 1 (mod11). Our computation
shows that k=10 is the smallest exponent such that 2k�1 (mod11). We therefore say that 2 hasmultiplicative
order 10 modulo 11.
Also notice that the values 20; 21; :::; 29, together with 0, form a complete set of residues modulo 11. For that
reason, we say that 2 is a primitive root modulo 11.

De�nition 120. The multiplicative order of an invertible residue a modulo n is the smallest
positive integer k such that ak� 1 (modn).

De�nition 121. If the multiplicative order of an residue a modulo n equals �(n) [in other words,
the order is as large as possible], then a is said to be a primitive root modulo n.

A primitive root is also referred to as a multiplicative generator (because the products of a, that is, 1; a; a2;
a3; :::, produce all [�(n) many] invertible residues).

Example 122. Determine the orders of each (invertible) residue modulo 7. In particular, determine
all primitive roots modulo 7.
Solution. We will develop more tools next time. For now, let us just consider each residue individually and
determine, by brute-force, what its order is.

� Since 22=4, 23� 1, the order of 2 is 3.

� Since 32=2, 33� 6, 34� 4, 35� 5, 36� 1, the order of 3 is 6.

Proceeding likewise for the other residues, we �nd:

residue 1 2 3 4 5 6
order 1 3 6 3 6 2

In particular, the primitive roots are 3 and 5.
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