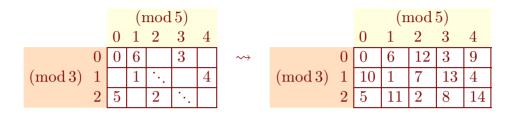
Example 104. By the Chinese remainder theorem there is a bijective correspondence

$$x \pmod{nm} \mapsto \left[\begin{array}{c} x \pmod{n} \\ x \pmod{m} \end{array} \right].$$

Here's a graphical representation for n = 3, m = 5. Do you see the pattern?



Example 105. Solve $x \equiv 1 \pmod{4}$, $x \equiv 2 \pmod{5}$, $x \equiv 3 \pmod{7}$.

Solution. $x \equiv 1 \cdot 5 \cdot 7 \cdot [(5 \cdot 7)_{\text{mod}4}^{-1}] + 2 \cdot 4 \cdot 7 \cdot [(4 \cdot 7)_{\text{mod}5}^{-1}] + 3 \cdot 4 \cdot 5 \cdot [(4 \cdot 5)_{\text{mod}7}^{-1}]$ $\equiv 105 + 112 - 60 = 157 \equiv 17 \pmod{140}.$

Silicon slave labor. Once you are comfortable doing it by hand, you can easily let Sage do the work for you:

Sage] crt([1,2,3], [4,5,7]) 17

Example 106. Solve $x \equiv 2 \pmod{3}$, $3x \equiv 2 \pmod{5}$, $5x \equiv 2 \pmod{7}$.

Solution. Note that $3^{-1} \equiv 2 \pmod{5}$ and $5^{-1} \equiv 3 \pmod{7}$. Hence, we can simplify the congruences to $x \equiv 2 \pmod{3}$, $x \equiv 2 \cdot 2 \equiv -1 \pmod{5}$, $x \equiv 2 \cdot 3 \equiv -1 \pmod{7}$. Using the CRT, $x \equiv 2 \cdot 5 \cdot 7 \cdot \underbrace{[(5 \cdot 7)_{\text{mod}3}^{-1}] - 1 \cdot 3 \cdot 7 \cdot \underbrace{[(3 \cdot 7)_{\text{mod}5}^{-1}]}_{1} - 1 \cdot 3 \cdot 5 \cdot \underbrace{[(3 \cdot 5)_{\text{mod}7}^{-1}]}_{1}}_{1} \equiv 140 - 21 - 15 = 104 \equiv -1 \pmod{105}$.

Note. Can you see how we could have totally gotten that answer without the CRT computation?

Example 107. (extra)

- (a) Solve $x \equiv 2 \pmod{4}$, $x \equiv 3 \pmod{25}$.
- (b) Solve $x \equiv -1 \pmod{4}$, $x \equiv 2 \pmod{7}$, $x \equiv 0 \pmod{9}$.

Solution. (final answer only)

- (a) $x \equiv 78 \pmod{100}$
- (b) $x \equiv 135 \pmod{252}$

Example 108. How many solutions does $x^2 \equiv 9 \pmod{M}$ have for M = 55? For M = 385? For M = 110? For M = 105?

Solution.

- (a) $M = 55 = 5 \cdot 11$. There are 2 solutions modulo 5 and 2 solutions modulo 11. By the CRT, these combine to $2 \cdot 2 = 4$ solutions modulo 55.
- (b) $M = 385 = 5 \cdot 7 \cdot 11$. There are 2 solutions modulo 5, 2 solutions modulo 7, and 2 solutions modulo 11. By the CRT, these combine to $2 \cdot 2 \cdot 2 = 8$ solutions modulo 385.
- (c) $M = 110 = 2 \cdot 5 \cdot 11$. There is 1 solution modulo 2 (why?!), 2 solutions modulo 5, and 2 solutions modulo 11. By the CRT, these combine to $1 \cdot 2 \cdot 2 = 4$ solutions modulo 110.
- (d) $M = 105 = 3 \cdot 5 \cdot 7$. There is 1 solution modulo 3 (why?!), 2 solutions modulo 5, and 2 solutions modulo 7. By the CRT, these combine to $1 \cdot 2 \cdot 2 = 4$ solutions modulo 105.

Example 109. (extra) Determine all solutions to $x^2 \equiv 9 \pmod{110}$.

Solution. By the CRT:

 $\begin{array}{l} x^2 \equiv 9 \pmod{110} \\ \iff x^2 \equiv 9 \pmod{2} \text{ and } x^2 \equiv 9 \pmod{5} \text{ and } x^2 \equiv 9 \pmod{11} \\ \iff x \equiv \pm 3 \pmod{2} \text{ and } x \equiv \pm 3 \pmod{5} \text{ and } x \equiv \pm 3 \pmod{11} \\ \iff x \equiv 1 \pmod{2} \text{ and } x \equiv \pm 3 \pmod{5} \text{ and } x \equiv \pm 3 \pmod{11} \end{array}$

Let us write down all possible four combinations:

solution #1	solution #2	solution #3	solution $#4$
$x \equiv 1 \pmod{2}$	$x \equiv 1 \pmod{2}$	$x \equiv 1 \pmod{2}$	$x \equiv 1 \pmod{2}$
$x \equiv 3 \pmod{5}$	$x \equiv 3 \pmod{5}$	$x \equiv -3 \pmod{5}$	$x \equiv -3 \pmod{5}$
$x \equiv 3 \pmod{11}$	$x \equiv -3 \pmod{11}$	$x \equiv 3 \pmod{11}$	$x \equiv -3 \pmod{11}$
$x \equiv 3 \pmod{110}$	$x \equiv a \pmod{110}$	$x \equiv -a \pmod{110}$	$x \equiv -3 \pmod{110}$

To get the non-obvious solution a, we solve $x \equiv 1 \pmod{2}$, $x \equiv 3 \pmod{5}$, $x \equiv -3 \pmod{11}$.

$$x \equiv 1 \cdot 55 \cdot \underbrace{55_{\text{mod}2}^{-1}}_{1} + 3 \cdot 22 \cdot \underbrace{22_{\text{mod}5}^{-1}}_{-2} - 3 \cdot 10 \cdot \underbrace{10_{\text{mod}11}^{-1}}_{-1} \equiv 55 - 132 + 30 \equiv -47 \pmod{110}$$

Hence, the solutions are $x \equiv \pm 3 \pmod{110}$ and $x \equiv \pm 47 \pmod{110}$.

11 Euler's phi function

Definition 110. Euler's phi function $\phi(n)$ denotes the number of integers in $\{1, 2, ..., n\}$ that are relatively prime to n.

[For n>1, we might as well replace $\{1,2,...,n\}$ with $\{1,2,...,n-1\}$.]

Important comment. In other words, $\phi(n)$ counts how many numbers are invertible modulo n.

Example 111. Compute $\phi(n)$ for n = 1, 2, ..., 8.

Solution. $\phi(1) = 1$, $\phi(2) = 1$, $\phi(3) = 2$, $\phi(4) = 2$, $\phi(5) = 4$, $\phi(6) = 2$, $\phi(7) = 6$, $\phi(8) = 4$.

Observation 1. $\phi(n) = n - 1$ if and only if n is a prime.

This is true because $\phi(n) = n - 1$ if and only if n doesn't share a common factor with any of $\{1, 2, ..., n - 1\}$. Observation 2. If p is a prime, then $\phi(p^k) = p^k - p^{k-1} = p^k \left(1 - \frac{1}{n}\right)$.

This is true because, if p is a prime, then $n = p^k$ is coprime to all $\{1, 2, ..., p^k\}$ except $p, 2p, ..., p^k$.

Theorem 112.

- (a) $\phi(n) = n 1$ if and only if n is a prime.
- (b) If p is a prime, then $\phi(p^k) = p^k \frac{p^k}{p} = p^k \left(1 \frac{1}{p}\right)$.
- (c) ϕ is multiplicative, that is, $\phi(nm) = \phi(n)\phi(m)$ whenever n, m are coprime.

(d) If the prime factorization of n is $n = p_1^{k_1} \cdots p_r^{k_r}$, then $\phi(n) = n \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_r}\right)$.

Proof.

- (a) $\phi(n) = n 1$ if and only if n doesn't share a common factor with any of $\{1, 2, ..., n 1\}$. That's true for n precisely when it is a prime.
- (b) If p is a prime, then $n = p^k$ is coprime to all $\{1, 2, ..., p^k\}$ except $p, 2p, ..., p^k$.
- (c) Note that a is invertible modulo nm if and only if a is invertible modulo both n and m. The claim therefore follows from the Chinese remainder theorem which provides a bijective (i.e., 1-1 and onto) correspondence

$$x \pmod{n m} \mapsto \left[\begin{array}{c} x \pmod{n} \\ x \pmod{m} \end{array} \right]$$

Alternatively, our book contains a direct proof (page 133).

(d) Using the two previous parts, we have $\phi(n) = \phi(p_1^{k_1}) \cdots \phi(p_r^{k_r}) = p_1^{k_1} \left(1 - \frac{1}{p_1}\right) \cdots p_r^{k_r} \left(1 - \frac{1}{p_r}\right) = n \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_r}\right).$

Example 113. Compute $\phi(1000)$.

Solution. $\phi(1000) = \phi(2^3 \cdot 5^3) = 1000 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{5}\right) = 400.$

Alternatively. $\phi(1000) = \phi(2^3) \cdot \phi(5^3) = (8-4)(125-25) = 400$

Example 114. (extra) Compute $\phi(980)$.

Solution. $\phi(980) = \phi(2^2 \cdot 5 \cdot 7^2) = 980 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{5}\right) \left(1 - \frac{1}{7}\right) = 336.$

Armin Straub straub@southalabama.edu