
Sketch of Lecture 13 Tue, 10/8/2019

Example 104. By the Chinese remainder theorem there is a bijective correspondence

x (modnm) 7!
�
x (modn)
x (modm)

�
:

Here's a graphical representation for n=3, m=5. Do you see the pattern?

(mod 5)
0 1 2 3 4

0 0 6 3
(mod 3) 1 1 ��� 4

2 5 2 ���

 

(mod 5)
0 1 2 3 4

0 0 6 12 3 9
(mod 3) 1 10 1 7 13 4

2 5 11 2 8 14

Example 105. Solve x� 1 (mod 4), x� 2 (mod 5), x� 3 (mod 7).

Solution. x� 1 � 5 � 7 � [(5 � 7)mod4
¡1 ]

3

+2 � 4 � 7 � [(4 � 7)mod5
¡1 ]

2

+3 � 4 � 5 � [(4 � 5)mod7
¡1 ]

¡1
� 105+ 112¡ 60= 157� 17 (mod140):

Silicon slave labor. Once you are comfortable doing it by hand, you can easily let Sage do the work for you:

Sage] crt([1,2,3], [4,5,7])

17

Example 106. Solve x� 2 (mod 3), 3x� 2 (mod 5), 5x� 2 (mod 7).

Solution. Note that 3¡1� 2 (mod5) and 5¡1� 3 (mod7).
Hence, we can simplify the congruences to x� 2 (mod3), x� 2 � 2�¡1 (mod5), x� 2 � 3�¡1 (mod7).

Using the CRT, x� 2 � 5 � 7 � [(5 � 7)mod3
¡1 ]

2

¡ 1 � 3 � 7 � [(3 � 7)mod5
¡1 ]

1

¡ 1 � 3 � 5 � [(3 � 5)mod7
¡1 ]

1

� 140¡ 21¡ 15= 104�¡1 (mod105).
Note. Can you see how we could have totally gotten that answer without the CRT computation?

Example 107. (extra)

(a) Solve x� 2 (mod 4), x� 3 (mod25).

(b) Solve x�¡1 (mod 4), x� 2 (mod 7), x� 0 (mod 9).

Solution. (�nal answer only)

(a) x� 78 (mod100)

(b) x� 135 (mod252)
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Example 108. How many solutions does x2� 9 (modM) have for M = 55? For M = 385? For
M = 110? For M = 105?
Solution.

(a) M =55=5 �11. There are 2 solutions modulo 5 and 2 solutions modulo 11. By the CRT, these combine
to 2 � 2=4 solutions modulo 55.

(b) M = 385=5 � 7 �11. There are 2 solutions modulo 5, 2 solutions modulo 7, and 2 solutions modulo 11.
By the CRT, these combine to 2 � 2 � 2=8 solutions modulo 385.

(c) M =110=2 �5 �11. There is 1 solution modulo 2 (why?!), 2 solutions modulo 5, and 2 solutions modulo
11. By the CRT, these combine to 1 � 2 � 2=4 solutions modulo 110.

(d) M =105=3 � 5 � 7. There is 1 solution modulo 3 (why?!), 2 solutions modulo 5, and 2 solutions modulo
7. By the CRT, these combine to 1 � 2 � 2=4 solutions modulo 105.

Example 109. (extra) Determine all solutions to x2� 9 (mod110).

Solution. By the CRT:

x2� 9 (mod110)
() x2� 9 (mod2) and x2� 9 (mod5) and x2� 9 (mod11)
() x��3 (mod2) and x��3 (mod5) and x��3 (mod11)
() x� 1 (mod2) and x��3 (mod5) and x��3 (mod11)

Let us write down all possible four combinations:

solution #1 solution #2 solution #3 solution #4
x� 1 (mod2) x� 1 (mod2) x� 1 (mod2) x� 1 (mod2)
x� 3 (mod5) x� 3 (mod5) x�¡3 (mod5) x�¡3 (mod5)
x� 3 (mod11) x�¡3 (mod11) x� 3 (mod11) x�¡3 (mod11)
x� 3 (mod110) x� a (mod110) x�¡a (mod110) x�¡3 (mod110)

To get the non-obvious solution a, we solve x� 1 (mod2), x� 3 (mod5), x�¡3 (mod11).

x� 1 � 55 � 55mod2
¡1

1

+3 � 22 �22mod5
¡1

¡2

¡ 3 � 10 � 10mod11
¡1

¡1

� 55¡ 132+ 30�¡47 (mod110)

Hence, the solutions are x��3 (mod110) and x��47 (mod110).
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11 Euler's phi function

De�nition 110. Euler's phi function �(n) denotes the number of integers in f1; 2; :::; ng that
are relatively prime to n.
[For n> 1, we might as well replace f1; 2; :::; ng with f1; 2; :::; n¡ 1g.]
Important comment. In other words, �(n) counts how many numbers are invertible modulo n.

Example 111. Compute �(n) for n=1; 2; :::; 8.
Solution. �(1)= 1, �(2)=1, �(3)=2, �(4)=2, �(5)=4, �(6)= 2, �(7)=6, �(8)=4.

Observation 1. �(n)=n¡ 1 if and only if n is a prime.
This is true because �(n)=n¡ 1 if and only if n doesn't share a common factor with any of f1; 2; :::; n¡ 1g.
Observation 2. If p is a prime, then �(pk)= pk¡ pk¡1= pk

�
1¡ 1

p

�
.

This is true because, if p is a prime, then n= pk is coprime to all f1; 2; :::; pkg except p; 2p; :::; pk.

Theorem 112.

(a) �(n)=n¡ 1 if and only if n is a prime.

(b) If p is a prime, then �(pk)= pk¡ pk

p
= pk

�
1¡ 1

p

�
.

(c) � is multiplicative, that is, �(nm)= �(n)�(m) whenever n;m are coprime.

(d) If the prime factorization of n is n= p1
k1���prkr, then �(n)=n

�
1¡ 1

p1

�
���
�
1¡ 1

pr

�
.

Proof.

(a) �(n) = n¡ 1 if and only if n doesn't share a common factor with any of f1; 2; :::; n¡ 1g. That's true
for n precisely when it is a prime.

(b) If p is a prime, then n= pk is coprime to all f1; 2; :::; pkg except p; 2p; :::; pk.

(c) Note that a is invertible modulo nm if and only if a is invertible modulo both n and m.
The claim therefore follows from the Chinese remainder theorem which provides a bijective (i.e., 1-1 and
onto) correspondence

x (modnm) 7!
�
x (modn)
x (modm)

�
:

Alternatively, our book contains a direct proof (page 133).

(d) Using the two previous parts, we have

�(n)= �(p1
k1)����(prkr)= p1

k1
�
1¡ 1

p1

�
���prkr

�
1¡ 1

pr

�
=n

�
1¡ 1

p1

�
���
�
1¡ 1

pr

�
. �

Example 113. Compute �(1000).

Solution. �(1000)= �(23 � 53)= 1000
�
1¡ 1

2

��
1¡ 1

5

�
= 400.

Alternatively. �(1000)= �(23) � �(53)= (8¡ 4)(125¡ 25) = 400

Example 114. (extra) Compute �(980).

Solution. �(980)= �(22 � 5 � 72)= 980
�
1¡ 1

2

��
1¡ 1

5

��
1¡ 1

7

�
= 336.
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