Example 89. Compute $407^{37249} \pmod{101}$.

Solution. First, $407^{37249} \equiv 3^{37249} \pmod{101}$. Then, using Fermat, $3^{37249} \equiv 3^{49} \pmod{101}$. We then use binary exponentiation: $3^2 = 9$, $3^4 = 81 \equiv -20$, $3^8 \equiv (-20)^2 = 400 \equiv -4$, $3^{16} \equiv (-4)^2 \equiv 16$, $3^{32} \equiv 16^2 \equiv 54$, all modulo 101 Since $49 = (110001)_2 = 2^0 + 2^4 + 2^5$, we have $3^{49} = 3^{32} \cdot 3^{16} \cdot 3^1 \equiv 54 \cdot 16 \cdot 3 \equiv 67 \pmod{101}$. In conclusion, $407^{37249} \equiv 67 \pmod{101}$.

Example 90. (extra) Using binary exponentiation, compute $5^{49} \pmod{105}$.

Solution. Recall that $49 = (110001)_2 = 2^0 + 2^4 + 2^5$. $5^1 = 5, 5^2 = 25, 5^4 = 25^2 = 625 \equiv -5, 5^8 \equiv (-5)^2 = 25, 5^{16} \equiv 25^2 \equiv -5, 5^{32} \equiv (-5)^2 = 25$ Hence, $5^{49} = 5^{32} \cdot 5^{16} \cdot 5^1 \equiv 25 \cdot (-5) \cdot 5 \equiv 5$.

9 Chinese remainder theorem

Example 91. (warmup)

- (a) If $x \equiv 3 \pmod{10}$, what can we say about $x \pmod{5}$?
- (b) If $x \equiv 3 \pmod{7}$, what can we say about $x \pmod{5}$?

Solution.

- (a) If $x \equiv 3 \pmod{10}$, then $x \equiv 3 \pmod{5}$. [Why?! Because $x \equiv 3 \pmod{10}$ if and only if x = 3 + 10m, which modulo 5 reduces to $x \equiv 3 \pmod{5}$.]
- (b) Absolutely nothing! x = 3 + 7m can be anything modulo 5 (because $7 \equiv 2$ is invertible modulo 5).

Example 92. If $x \equiv 3 \pmod{5}$, what can we say about $x \pmod{15}$? Solution. $x \equiv 3, 8, 13 \pmod{15}$

Example 93. If $x \equiv 32 \pmod{35}$, then $x \equiv 2 \pmod{5}$, $x \equiv 4 \pmod{7}$.

Why?! As in the first part of the warmup, if $x \equiv 32 \pmod{35}$, then $x \equiv 32 \pmod{5}$ and $x \equiv 32 \pmod{7}$.

The Chinese remainder theorem says that this can be reversed!

That is, if $x \equiv 2 \pmod{5}$ and $x \equiv 4 \pmod{7}$, then the value of $x \mod 5 \cdot 7 = 35$ is determined. [How to find the value $x \equiv 32 \pmod{35}$ is discussed in the next example.]

Example 94. Solve $x \equiv 2 \pmod{5}$, $x \equiv 4 \pmod{7}$.

Solution. $x \equiv 2 \cdot 7 \cdot \underbrace{7_{\text{mod}5}^{-1}}_{3} + 4 \cdot 5 \cdot \underbrace{5_{\text{mod}7}^{-1}}_{3} \equiv 42 + 60 \equiv 32 \pmod{35}$

Important comment. Can you see how we need 5 and 7 to be coprime here?

Brute force solution. Note that, while in principle we can always perform a brute force search, this is not practical for larger problems. Here, if x is a solution, then so is x + 35. So we only look for solutions modulo 35. Since $x \equiv 4 \pmod{7}$, the only candidates for solutions are 4, 11, 18, ... Among these, we find x = 32. [We can also focus on $x \equiv 2 \pmod{5}$ and consider the candidates 2, 7, 12, ..., but that is even more work.]

Example 95. Solve $x \equiv 2 \pmod{3}$, $x \equiv 1 \pmod{5}$.

Solution. $x \equiv 2 \cdot 5 \cdot \underbrace{5_{\text{mod}3}^{-1}}_{-1} + 1 \cdot 3 \cdot \underbrace{3_{\text{mod}5}^{-1}}_{2} \equiv -10 + 6 \equiv 11 \pmod{15}$

Theorem 96. (Chinese Remainder Theorem) Let $n_1, n_2, ..., n_r$ be positive integers with $gcd(n_i, n_j) = 1$ for $i \neq j$. Then the system of congruences

 $x \equiv a_1 \pmod{n_1}, \quad \dots, \quad x \equiv a_r \pmod{n_r}$

has a simultaneous solution, which is unique modulo $n = n_1 \cdots n_r$.

In other words. The Chinese remainder theorem provides a bijective (i.e., 1-1 and onto) correspondence

 $x \pmod{nm} \mapsto \left[\begin{array}{c} x \pmod{n} \\ x \pmod{m} \end{array} \right].$

For instance. Let's make the correspondence explicit for n = 2, m = 3: $0 \mapsto \begin{bmatrix} 0\\0 \end{bmatrix}$, $1 \mapsto \begin{bmatrix} 1\\1 \end{bmatrix}$, $2 \mapsto \begin{bmatrix} 0\\2 \end{bmatrix}$, $3 \mapsto \begin{bmatrix} 1\\0 \end{bmatrix}$, $4 \mapsto \begin{bmatrix} 0\\1 \end{bmatrix}$, $5 \mapsto \begin{bmatrix} 1\\2 \end{bmatrix}$

Example 97.

- (a) Let p > 3 be a prime. Show that $x^2 \equiv 9 \pmod{p}$ has exactly two solutions (i.e. ± 3).
- (b) Let p, q > 3 be distinct primes. Show that $x^2 \equiv 9 \pmod{pq}$ always has exactly four solutions (± 3 and two more solutions $\pm a$).

Solution.

- (a) If $x^2 \equiv 9 \pmod{p}$, then $0 \equiv x^2 9 = (x 3)(x + 3) \pmod{p}$. Since p is a prime it follows that $x 3 \equiv 0 \pmod{p}$ or $x + 3 \equiv 0 \pmod{p}$. That is, $x \equiv \pm 3 \pmod{p}$.
- (b) By the CRT, we have x² ≡ 9 (mod pq) if and only if x² ≡ 9 (mod p) and x² ≡ 9 (mod q). Hence, x ≡ ±3 (mod p) and x ≡ ±3 (mod q). These combine in four different ways.
 For instance, x ≡ 3 (mod p) and x ≡ 3 (mod q) combine to x ≡ 3 (mod pq). However, x ≡ 3 (mod p) and x ≡ -3 (mod q) combine to something modulo pq which is different from 3 or -3.

Why primes >3? Why did we exclude the primes 2 and 3 in this discussion? Comment. There is nothing special about 9. The same is true for $x^2 \equiv a^2 \pmod{pq}$ for any integer a.

Example 98. Determine all solutions to $x^2 \equiv 9 \pmod{35}$.

Solution. By the CRT:

 $\begin{array}{l} x^2 \equiv 9 \pmod{35} \\ \Longleftrightarrow \quad x^2 \equiv 9 \pmod{5} \text{ and } x^2 \equiv 9 \pmod{7} \\ \iff \quad x \equiv \pm 3 \pmod{5} \text{ and } x \equiv \pm 3 \pmod{7} \end{array}$

The two obvious solutions modulo 35 are ± 3 . To get one of the two additional solutions, we solve $x \equiv 3 \pmod{5}$, $x \equiv -3 \pmod{7}$. [Then the other additional solution is the negative of that.]

$$x \equiv 3 \cdot 7 \cdot \frac{7^{-1}_{\text{mod}5}}{3} - 3 \cdot 5 \cdot \frac{5^{-1}_{\text{mod}7}}{3} \equiv 63 - 45 \equiv 18 \pmod{35}$$

Hence, the solutions are $x \equiv \pm 3 \pmod{35}$ and $x \equiv \pm 18 \pmod{35}$. $[\pm 18 \equiv \pm 17 \pmod{35}]$