Example 64. Every integer x is congruent to one of 0, 1, 2, 3, 4 modulo 5.

We therefore say that 0, 1, 2, 3, 4 form a **complete set of residues** modulo 5.

Another natural complete set of residues modulo 5 is: $0, \pm 1, \pm 2$

A not so natural complete set of residues modulo 5 is: -5, 2, 4, 8, 16

A possibly natural complete set of residues modulo 5 is: $0, 3, 3^2 = 9, 3^3 = 27, 3^4 = 81$

[We will talk more about this last case. Because we obtained a complete set of residues this way, we will say that "3 is a multiplicative generator modulo 5".]

Review. *a* is invertible modulo *n* if and only if gcd(a, n) = 1. We can compute a^{-1} using the Euclidean algorithm.

Example 65. (review) Determine $16^{-1} \pmod{25}$.

Solution. Using the Euclidean algorithm, in Example 19, we found that $11 \cdot 16 - 7 \cdot 25 = 1$. Reducing that modulo 25, we get $11 \cdot 16 \equiv 1 \pmod{25}$. Hence, $16^{-1} \equiv 11 \pmod{25}$.

Example 66. List all invertible residues modulo 10.

Solution. 1, 3, 7, 9(We start with all residues 0, 1, 2, ..., 9 and only keep those which have no common divisor with 10.)

5.2 Linear congruences

Let us consider the linear congruence $ax \equiv b \pmod{n}$ where we are looking for solutions x.

We will regard solutions x_1, x_2 as the same if $x_1 \equiv x_2 \pmod{n}$.

Example 67. (review) Solve $16x \equiv 4 \pmod{25}$.

Solution. We first find $16^{-1} \pmod{25}$. Bézout's identity: $-7 \cdot 25 + 11 \cdot 16$. Reducing this modulo 25, we get $11 \cdot 16 \equiv 1 \pmod{25}$. Hence, $16^{-1} \equiv 11 \pmod{25}$. It follows that $16x \equiv 4 \pmod{25}$ has the (unique) solution $x \equiv 16^{-1} \cdot 4 \equiv 11 \cdot 4 \equiv 19 \pmod{25}$.

Example 68.

- (a) $3x \equiv 2 \pmod{7}$ has the solution x = 3. We regard x = 10 or x = 17 as the same solution. We therefore write that $x \equiv 3 \pmod{7}$ is the unique solution to the equation.
- (b) $3x \equiv 2 \pmod{9}$ has no solutions x.

Why? Reducing 3x = 2 + 9m modulo 3, we get $0 \equiv 2 \pmod{3}$ which is a contradiction. Just to make sure! Why does the same argument not apply to $3x \equiv 2 \pmod{7}$?

(c) $6x \equiv 3 \pmod{9}$ has solutions x = 2, x = 5, x = 8.

6x = 3 + 9m is equivalent to 2x = 1 + 3m or $2x \equiv 1 \pmod{3}$. Which has solution $x \equiv 2 \pmod{3}$.

Theorem 69. Consider the linear congruence $ax \equiv b \pmod{n}$. Let $d = \gcd{(a, n)}$.

- (a) The linear congruence has a solution if and only if d|b.
- (b) If d = 1, then there is a unique solution modulo n.
- (c) If d|b, then it has d different solutions modulo n.

(In fact, it has a unique solution modulo n/d.)

Proof.

- (a) Finding x such that $ax \equiv b \pmod{n}$ is equivalent to finding x, y such that ax + ny = b. The latter is a diophantine equation of the kind we studied earlier. In particular, we know that it has a solution if and only if gcd (a, n) divides b.
- (b) If d=1, then a is invertible modulo n. Multiplying the congruence ax ≡ b (mod n) with a⁻¹, we obtain x ≡ a⁻¹b (mod n). That's the unique solution.
 Alternatively. If d=1, then ax + ny = b has general solution x = x₀ + tn, y = y₀ ta (where x₀, y₀ is some particular solution). But, modulo n, all of these lead to the same solution x ≡ x₀ (mod n).
- (c) If d|b, then $ax \equiv b \pmod{n}$ is equivalent to $a_1x \equiv b_1 \pmod{n_1}$ with $a_1 = \frac{a}{d}$, $b_1 = \frac{b}{d}$, $n_1 = \frac{n}{d}$. (Make sure you see why! Spell out the congruences as equalities.) Since $gcd(a_1, n_1) = 1$, we get a unique solution x modulo n_1 .

Being congruent to x modulo n_1 is the same as being congruent to one of $x, x + n_1, ..., x + (d-1)n_1$ modulo n.

Example 70. Solve the system

$$7x + 3y \equiv 10 \pmod{16}$$

$$2x + 5y \equiv 9 \pmod{16}.$$

Solution. As a first step we solve the system:

$$7x + 3y = 10$$
$$2x + 5y = 9$$

However you prefer solving this system (two options below), you will find the unique solution $x = \frac{23}{29}$, $y = \frac{43}{29}$.

To obtain a solution to the congruences modulo 16, all we have to do is to determine $29^{-1} \pmod{16}$ and then use that to reinterpret the solution we just obtained.

 $29^{-1} \equiv (-3)^{-1} \equiv 5 \pmod{16}$. Thus, $x = 29^{-1} \cdot 23 \equiv 5 \cdot 7 \equiv 3 \pmod{16}$ and $y = 29^{-1} \cdot 43 \equiv 5 \cdot 11 \equiv 7 \pmod{16}$. Comment. We should check our answer: $7 \cdot 3 + 3 \cdot 7 = 42 \equiv 10 \pmod{16}$, $2 \cdot 3 + 5 \cdot 7 = 41 \equiv 9 \pmod{16}$.

A naive way to solve 2×2 systems. To solve 7x + 3y = 10, 2x + 5y = 9, we can use the second equation to write $x = \frac{9}{2} - \frac{5}{2}y$ and substitute that into the first equation: $7\left(\frac{9}{2} - \frac{5}{2}y\right) + 3y = 10$, which simplifies to $\frac{63}{2} - \frac{29}{2}y = 10$. This yields $y = \frac{43}{29}$. Using that value in, say, the first equation, we get $7x + 3 \cdot \frac{43}{29} = 10$, which results in $x = \frac{23}{29}$. Solving 2×2 systems using matrix inverses. The equations 7x + 3y = 10, 2x + 5y = 9 can be expressed as

$$\left[\begin{array}{cc} 7 & 3 \\ 2 & 5 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} 10 \\ 9 \end{array}\right]$$

assuming we are familiar with the basic matrix-vector calculus. A solution is then given by

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 7 & 3 \\ 2 & 5 \end{bmatrix}^{-1} \begin{bmatrix} 10 \\ 9 \end{bmatrix} = \frac{1}{35-6} \begin{bmatrix} 5 & -3 \\ -2 & 7 \end{bmatrix} \begin{bmatrix} 10 \\ 9 \end{bmatrix} = \frac{1}{29} \begin{bmatrix} 23 \\ 43 \end{bmatrix}.$$

Here, we used that

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix},$$

one of the few formulas worth memorizing.

Advanced comment. It follows from the matrix inverse discussion that the system

$$ax + by \equiv r \pmod{n}$$

$$cx + dy \equiv s \pmod{n}$$

has a unique solution modulo n if gcd(ad - bc, n) = 1.

The matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible if and only if $ad - bc \neq 0$ (that is, ad - bc is invertible).

The matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible modulo n if and only if gcd(ad - bc, n) = 1 (that is, ad - bc is invertible modulo n).

Comment. You can also see Theorem 4.9 and Example 4.11 in our textbook for a direct approach modulo 16.

Example 71. (extra) Solve the system

$$2x - y \equiv 7 \pmod{15}$$

$$3x + 4y \equiv -2 \pmod{15}.$$

Solution. As a first step we solve the system:

$$2x - y = 7$$
$$3x + 4y = -2$$

You can solve the system any way you like. For instance, using a matrix inverse, we find

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}^{-1} \begin{bmatrix} 7 \\ -2 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 7 \\ -2 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 26 \\ -25 \end{bmatrix}.$$

To obtain a solution to the congruences modulo 15, we determine that $11^{-1} \equiv -4 \pmod{15}$ (you might be able to see this modular inverse; in any case, practice using the Euclidean algorithm to compute these). Therefore, $x = 11^{-1} \cdot 26 \equiv -4 \cdot 11 \equiv 1 \pmod{15}$ and $y = 11^{-1} \cdot (-25) \equiv -4 \cdot 5 \equiv 10 \pmod{15}$. Check our answer. $2 \cdot 1 - 10 = -8 \equiv 7 \pmod{15}$, $3 \cdot 1 + 4 \cdot 10 = 43 \equiv -2 \pmod{15}$.