Sketch of Lecture 7 Tue, 9/10/2019

Example 54. Show that 41]22° — 1.

Solution. In other words, we need to show that 22 =1 (mod41).
25=32=-9 (mod41). Hence, 220 = (2%)4=(-9)*=812=(-1)2=1 (mod41).

We saw last time that we can calculate with congruences. However:

Example 55. (caution!) If a=b (modn), then ac=bc (modn) for any integer c.

However, the converse is not true! We can have ac=bc (modn) without a=b (modn) (even
assuming that ¢ #0).

For instance. 2:4=2-1 (mod6) but 41 (mod6)
However. 2-4=2-1 (mod6) means 2-4=2-1+6m. Hence, 4=1+3m, or, 4=1 (mod 3).

Similarly, ab=0 (modn) does not always imply that a=0 (modn) or b=0 (modn).
For instance. 4-15=0 (mod6) but 40 (mod6) and 150 (mod6)

These issues do not occur when n is a prime, as the next results shows.

Lemma 56. Let p be a prime.
(a) If ab=0 (mod p), then a=0 (mod p) or b=0 (mod p).
(b) Suppose c£0 (modp). If ac=bc (mod p), then a=b (mod p).
Proof.

(a) This statement is equivalent to Lemma 23: if p|ab then p|a or p|b.

(b) ac=bc (mod p) means that p divides ac —bc=(a —b)c.
Since p is a prime, it follows that p|(a — b) or p|c.
In the latter case, c=0 (mod p), which we excluded. Hence, p|(a —b). Thatis, a=b (modp). O

5.1 Congruences: modular inverses |

We saw that ac=bc (modn) does not always imply a=b (modn).
For instance, 2-4=2-1 (mod6) but4#1 (mod6).
The reason is that 2 is not invertible modulo 6.

The issue is that 2|6 which results in 2-3=0 (mod6).

Let us briefly discuss residues that are invertible modulo 7.

Example 57. Note that 3-7=1 (mod 10). Hence, we write 3~ ' =7 (mod 10) and say that 7
is the modular inverse of 3 modulo 10.

Comment. As expected, we have (z7!)"! =2z (modn). Here, (31~ '=7"1=3 (mod 10).

Example 58. Solve 3z =4 (mod 10).

Solution. From the previous problem, we know that 3! =7 (mod 10).
Hence, 2=3"1-4=7-4=8 (mod 10).
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Example 59. Determine 4= (mod 13).
Brute force solution. We need to find a residue z such that 4o =1 (mod 13). We can try the values 0, 1, 2,
3, ..., 12 and find that « = 10 is the only solution modulo 13 (because 4-10=1 (mod 13)).

This approach may be fine for small examples when working by hand, but is not practical for serious congruences.
On the other hand, the Euclidean algorithm can compute modular inverses extremely efficiently (see below).

Glancing. In this special case, we can actually see the solution if we notice that 4 - 3 = 12, so that 4 - 3 =
—1 (mod 13) and therefore 4~ = —3 (mod 13). [Or, equivalently, —4~! =10 (mod 13).]

Solution. Since gecd (4, 13) =1, Bézout's identity promises that 4r + 13s =1 for some integers 7, s. Reducing
4r 4+ 13s =1 modulo 13, we find 47 =1 (mod 13), so that 4~ =7 (mod 13).

Using the Euclidean algorithm, we find, for instance, » = 10 and s = —3. Hence, 4-1=10 (mod 13).

Example 60. Solve 4r =5 (mod 13).

Solution. From the previous problem, we know that 4~ ! = —3 (mod 13).

Hence, r=4"!.5=-3.5=—2 (mod 13).

Advanced comment. We were able to solve 4z =5 (mod 13) by computing 4! using the Euclidean algorithm
instead of relying on brute force. However, for more complicated equations like 4* =5 (mod 13), we don't know
any method of finding solutions x that is significantly better than brute force. Indeed, certain cryptographic
methods depend precisely on the difficulty of solving congruences like 4* =5 (mod 13).

[Such a congruence is called a discrete logarithm problem because the solution to 4% =5 is  =log4(5).]

Example 61. Determine 16! (mod 25).

Solution. Using the Euclidean algorithm, in Example 19, we found that 11-16—7-25=1.
Reducing that modulo 25, we get 11-16=1 (mod 25).
Hence, 1671 =11 (mod 25).

Let a, b € 7Z, not both zero. Recall that the diophantine equation ax + by = ¢ has a solution if
and only if ¢ is a multiple of gcd (a, b). In particular, az + by = 1 has a solution if and only if
ged (a,b) =1.

Lemma 62. a is invertible modulo 7 if and only if ged (a,n) = 1.

Proof. The congruence az = 1 (mod n) is equivalent to ax + ny = 1 where y is some integer. Note that
ax +ny =1 is a diophantine equation (we are looking for integer solutions x, y) and that it has a solution if
and only if ged (a,n) = 1. O

Corollary 63. Let p be a prime. Then all nonzero residues are invertible modulo p.
Advanced comment. It is common to write Z /nZ for the set of all residues modulo n. The fact that we can
add and multiply as usual, makes Z/nZ into a (finite) ring.

Let p be a prime. The fact that, in addition, all nonzero residues are invertible makes Z / pZ into a (finite) field.
The fields we are familiar with, such as Q) (rationals), R (reals), € (complex numbers) are all infinite.

Armin Straub 16
straub@southalabama.edu



