
Sketch of Lecture 7 Tue, 9/10/2019

Example 54. Show that 41j220¡ 1.
Solution. In other words, we need to show that 220� 1 (mod41).
25= 32�¡9 (mod41). Hence, 220=(25)4� (¡9)4= 812� (¡1)2=1 (mod41).

We saw last time that we can calculate with congruences. However:

Example 55. (caution!) If a� b (modn), then ac� bc (modn) for any integer c.

However, the converse is not true! We can have ac� bc (modn) without a� b (modn) (even
assuming that c�/ 0).
For instance. 2 � 4� 2 � 1 (mod6) but 4�/ 1 (mod6)
However. 2 � 4� 2 � 1 (mod6) means 2 � 4=2 � 1+ 6m. Hence, 4=1+3m, or, 4� 1 (mod3).

Similarly, ab� 0 (modn) does not always imply that a� 0 (modn) or b� 0 (modn).
For instance. 4 � 15� 0 (mod6) but 4�/ 0 (mod6) and 15�/ 0 (mod6)

These issues do not occur when n is a prime, as the next results shows.

Lemma 56. Let p be a prime.

(a) If ab� 0 (mod p), then a� 0 (mod p) or b� 0 (mod p).

(b) Suppose c�/ 0 (mod p). If ac� bc (mod p), then a� b (mod p).

Proof.

(a) This statement is equivalent to Lemma 23: if pjab then pja or pjb.

(b) ac� bc (mod p) means that p divides ac¡ bc=(a¡ b)c.
Since p is a prime, it follows that pj(a¡ b) or pjc.
In the latter case, c� 0 (mod p), which we excluded. Hence, pj(a¡ b). That is, a� b (mod p). �

5.1 Congruences: modular inverses

We saw that ac� bc (modn) does not always imply a� b (modn).
For instance, 2 � 4� 2 � 1 (mod 6) but 4�/ 1 (mod 6).
The reason is that 2 is not invertible modulo 6.

The issue is that 2j6 which results in 2 � 3� 0 (mod6).

Let us brie�y discuss residues that are invertible modulo n.

Example 57. Note that 3 � 7� 1 (mod 10). Hence, we write 3¡1� 7 (mod 10) and say that 7
is the modular inverse of 3 modulo 10.
Comment. As expected, we have (x¡1)¡1� x (modn). Here, (3¡1)¡1� 7¡1� 3 (mod10).

Example 58. Solve 3x� 4 (mod10).
Solution. From the previous problem, we know that 3¡1� 7 (mod10).
Hence, x� 3¡1 � 4� 7 � 4=8 (mod10).

Armin Straub
straub@southalabama.edu

15



Example 59. Determine 4¡1 (mod13).
Brute force solution. We need to �nd a residue x such that 4x� 1 (mod13). We can try the values 0; 1; 2;
3; :::; 12 and �nd that x= 10 is the only solution modulo 13 (because 4 � 10� 1 (mod13)).
This approach may be �ne for small examples when working by hand, but is not practical for serious congruences.
On the other hand, the Euclidean algorithm can compute modular inverses extremely e�ciently (see below).
Glancing. In this special case, we can actually see the solution if we notice that 4 � 3 = 12, so that 4 � 3 �
¡1 (mod13) and therefore 4¡1�¡3 (mod13). [Or, equivalently, ¡4¡1� 10 (mod13).]

Solution. Since gcd (4; 13) = 1, Bézout's identity promises that 4r+ 13s=1 for some integers r; s. Reducing
4r+ 13s=1 modulo 13, we �nd 4r� 1 (mod13), so that 4¡1� r (mod13).
Using the Euclidean algorithm, we �nd, for instance, r= 10 and s=¡3. Hence, 4¡1� 10 (mod13).

Example 60. Solve 4x� 5 (mod13).
Solution. From the previous problem, we know that 4¡1�¡3 (mod13).
Hence, x� 4¡1 � 5�¡3 � 5=¡2 (mod13).
Advanced comment. We were able to solve 4x� 5 (mod13) by computing 4¡1 using the Euclidean algorithm
instead of relying on brute force. However, for more complicated equations like 4x� 5 (mod13), we don't know
any method of �nding solutions x that is signi�cantly better than brute force. Indeed, certain cryptographic
methods depend precisely on the di�culty of solving congruences like 4x� 5 (mod13).
[Such a congruence is called a discrete logarithm problem because the solution to 4x=5 is x= log4(5).]

Example 61. Determine 16¡1 (mod25).
Solution. Using the Euclidean algorithm, in Example 19, we found that 11 �16¡ 7 � 25=1.
Reducing that modulo 25, we get 11 � 16� 1 (mod25).
Hence, 16¡1� 11 (mod25).

Let a; b 2Z, not both zero. Recall that the diophantine equation ax+ by = c has a solution if
and only if c is a multiple of gcd (a; b). In particular, ax+ by = 1 has a solution if and only if
gcd (a; b)= 1.

Lemma 62. a is invertible modulo n if and only if gcd (a; n)= 1.

Proof. The congruence ax � 1 (mod n) is equivalent to ax + ny = 1 where y is some integer. Note that
ax+ ny = 1 is a diophantine equation (we are looking for integer solutions x; y) and that it has a solution if
and only if gcd (a; n)= 1. �

Corollary 63. Let p be a prime. Then all nonzero residues are invertible modulo p.
Advanced comment. It is common to write Z/nZ for the set of all residues modulo n. The fact that we can
add and multiply as usual, makes Z/nZ into a (�nite) ring.
Let p be a prime. The fact that, in addition, all nonzero residues are invertible makes Z/pZ into a (�nite) �eld.
The �elds we are familiar with, such as Q (rationals), R (reals), C (complex numbers) are all in�nite.
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