Example 46. (review)

- 56x + 72y = 15 has no integer solutions (because the left side is even but the right side is odd).
- 56x + 72y = 2 has no integer solutions (because 8|(56x + 72y) but $8 \nmid 2$).
- 56x + 72y = 8 has an integer solution (that's Bezout's identity!) and we can find it using the Euclidean algorithm (gcd (56, 72) = 8).

To make our life easier, we divide by 8 to get the equivalent equation 7x + 9y = 1. One solution is $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$, the general solution is $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \end{bmatrix} + \begin{bmatrix} 9 \\ -7 \end{bmatrix} t$ where $t \in \mathbb{Z}$.

• 56x + 72y = k has an integer solution if and only if k is a multiple of gcd(56, 72) = 8.

Determine all solutions to the diophantine equation 56x + 72y = 40. **Solution.** We divide by gcd (56, 72) = 8 to get 7x + 9y = 5. As observed above (or by using the Euclidean algorithm), a solution to 7x + 9y = 1 is $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$. Hence, the general solution is $\begin{bmatrix} x \\ y \end{bmatrix} = 5\begin{bmatrix} 4 \\ -3 \end{bmatrix} + \begin{bmatrix} 9 \\ -7 \end{bmatrix} t$ where $t \in \mathbb{Z}$.

Example 47. (problem of the "hundred fowls", appears in Chinese textbooks from the 6th century) If a rooster is worth five coins, a hen three coins, and three chicks together one coin, how many roosters, hens, and chicks, totaling 100, can be bought for 100 coins?

Solution. Let x be the number of roosters, y be the number of hens, z be the number of chicks.

$$\begin{aligned} x+y+z &= 100\\ 5x+3y+\frac{1}{3}z &= 100 \end{aligned}$$

Eliminating z from the equations by taking $3eq_2 - eq_1$, we get 14x + 8y = 200, or, 7x + 4y = 100.

- Since 100 is a multiple of gcd(7, 4) = 1, this equation does have integer solutions.
- We see (or find using the Euclidean algorithm) that a solution to 7x + 4y = 1 is $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$.
- Hence, 7x + 4y = 100 has general solution $\begin{bmatrix} x \\ y \end{bmatrix} = 100 \begin{bmatrix} -1 \\ 2 \end{bmatrix} + \begin{bmatrix} 4 \\ -7 \end{bmatrix} t = \begin{bmatrix} -100 + 4t \\ 200 7t \end{bmatrix}$ where $t \in \mathbb{Z}$.
- We can find z using one of the original equations: z = 100 x y = 3t.
- We are only interested in solutions with $x \ge 0$, $y \ge 0$, $z \ge 0$. $x \ge 0$ means $t \ge 25$. $y \ge 0$ means $t \le 28 + \frac{4}{7}$. $z \ge 0$ means $t \ge 0$.
- Hence, $t \in \{25, 26, 27, 28\}$. The four corresponding solutions (x, y, z) are (0, 25, 75), (4, 18, 78), (8, 11, 81), (12, 4, 84).

Example 48. You may have seen Pythagorean triples, which are solutions to the diophantine equation $x^2 + y^2 = z^2$.

A few cases. Some solutions (x, y, z) are (3, 4, 5), (6, 8, 10) (boring! why?!), (5, 12, 13), (8, 15, 17), ... The general solution. $(m^2 - n^2, 2mn, m^2 + n^2)$ is a Pythagorean triple for any integers m, n.

These solutions plus scaling generate all Pythagorean triples!

For instance, m = 2, n = 1 produces (3, 4, 5), while m = 3, n = 2 produces (5, 12, 13).

Fermat's last theorem. For, n > 2, the diophantine equation $x^n + y^n = z^n$ has no solutions!

Pierre de Fermat (1637) claimed in a margin of Diophantus' book *Arithmetica* that he had a proof ("I have discovered a truly marvellous proof of this, which this margin is too narrow to contain.").

It was finally proved by Andrew Wiles in 1995 (using a connection to modular forms and elliptic curves).

This problem is often reported as the one with the largest number of unsuccessful proofs.

Example 49. (HW) Determine all solutions of 4x + 7y = 67 with x and y positive integers.

Solution. We see that x = 2, y = -1 is a solution to 4x + 7y = 1 (you can, of course, use the Euclidean algorithm if you wish).

Hence, a particular solution to 4x + 7y = 67 is given by x = 134, y = -67.

The general solution to 4x + 7y = 67 is thus given by x = 134 + 7t, y = -67 - 4t, where t can be any integer.

- x > 0 if and only if 134 + 7t > 0 if and only if $t > -\frac{134}{7} \approx -19.14$. That is, t = -19, -18, ...
- y > 0 if and only if -67 4t > 0 if and only if $t < -\frac{67}{4} = -16.75$. That is, t = -17, -18, ...

Hence, we get a solution (x, y) with positive integers x, y for t = -19, -18, -17. The three corresponding solutions are: (1, 9), (8, 5), (15, 1).

5 Congruences

 $a \equiv b \pmod{n}$ means a = b + mn (for some $m \in \mathbb{Z}$)

In that case, we say that "a is congruent to b modulo n".

- In other words: $a \equiv b \pmod{n}$ if and only if a b is divisible by n.
- In yet other words: $a \equiv b \pmod{n}$ if and only if a and b leave the same remainder when dividing by n.

Example 50. $17 \equiv 5 \pmod{12}$ as well as $17 \equiv 29 \equiv -7 \pmod{12}$

Example 51. We will discuss in more detail that, and how, we can calculate with congruences. Here is an appetizer: What is 2^{100} modulo 3? That is, what's the remainder upon division by 3? **Solution.** $2 \equiv -1 \pmod{3}$. Hence, $2^{100} \equiv (-1)^{100} \equiv 1 \pmod{3}$. Theorem 52. We can calculate with congruences.

 First of all, if a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n). In other words, being congruent is a transitive property. Why? n|(b-a) and n|(c-b), then n|((b-a)+(c-b)).

Alternatively, we can note that each of a, b, c leaves the same remainder when dividing by n.

- If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then
 - (a) $a + c \equiv b + d \pmod{n}$ Why? $(b+d) - (a+c) \equiv (b-a) + (d-c)$ is indeed divisible by n(because $n \mid (b-a)$ and $n \mid (d-c)$).
 - (b) $ac \equiv bd \pmod{n}$

Why? bd - ac = (bd - bc) + (bc - ac) = b(d - c) + c(b - a) is indeed divisible by n (because n|(b - a) and n|(d - c)).

• In particular, if $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$ for any positive integer k.

Example 53. Compute $36 \cdot 75 \pmod{11}$.

Solution. Since $36 \equiv 3 \pmod{11}$ and $75 \equiv -2 \pmod{11}$, we have $36 \cdot 75 \equiv 3 \cdot (-2) = -6 \equiv 5 \pmod{11}$. **Important comment.** We do not need to compute that $36 \cdot 75 = 2700$ (and then reduce modulo 11)! Our ability to avoid computing large intermediate quantities is crucial for applications like cryptography.