
Sketch of Lecture 6 Thu, 9/5/2019

Example 46. (review)

� 56x+ 72y= 15 has no integer solutions (because the left side is even but the right side is odd).

� 56x+ 72y=2 has no integer solutions (because 8j(56x+ 72y) but 8 - 2).

� 56x+ 72y=8 has an integer solution (that's Bezout's identity!) and we can �nd it using
the Euclidean algorithm (gcd (56; 72)= 8).

To make our life easier, we divide by 8 to get the equivalent equation 7x+9y=1.

One solution is
�
x
y

�
=

�
4
¡3

�
, the general solution is

�
x
y

�
=

�
4
¡3

�
+

�
9
¡7

�
t where t2Z.

� 56x+ 72y= k has an integer solution if and only if k is a multiple of gcd (56; 72)= 8.

� Determine all solutions to the diophantine equation 56x+ 72y= 40.

Solution. We divide by gcd (56;72) = 8 to get 7x+9y=5.

As observed above (or by using the Euclidean algorithm), a solution to 7x+9y=1 is
�
x
y

�
=

�
4
¡3

�
.

Hence, the general solution is
�
x
y

�
=5

�
4
¡3

�
+

�
9
¡7

�
t where t2Z.

Example 47. (problem of the �hundred fowls�, appears in Chinese textbooks from the 6th
century) If a rooster is worth �ve coins, a hen three coins, and three chicks together one coin,
how many roosters, hens, and chicks, totaling 100, can be bought for 100 coins?

Solution. Let x be the number of roosters, y be the number of hens, z be the number of chicks.

x+ y+ z = 100

5x+3y+
1
3
z = 100

Eliminating z from the equations by taking 3eq2¡ eq1, we get 14x+8y= 200, or, 7x+4y= 100.

� Since 100 is a multiple of gcd (7; 4)= 1, this equation does have integer solutions.

� We see (or �nd using the Euclidean algorithm) that a solution to 7x+4y=1 is
�
x
y

�
=

�
¡1
2

�
.

� Hence, 7x+4y= 100 has general solution
�
x
y

�
= 100

�
¡1
2

�
+

�
4
¡7

�
t=

�
¡100+4t
200¡ 7t

�
where t2Z.

� We can �nd z using one of the original equations: z= 100¡x¡ y=3t.

� We are only interested in solutions with x> 0, y> 0, z> 0.
x> 0 means t> 25. y> 0 means t6 28+ 4

7
. z> 0 means t> 0.

� Hence, t2f25; 26; 27; 28g.
The four corresponding solutions (x; y; z) are (0; 25; 75), (4; 18; 78), (8; 11; 81), (12; 4; 84).
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Solving diophantine equations can be incredibly hard!

Example 48. You may have seen Pythagorean triples, which are solutions to the diophantine
equation x2+ y2= z2.

A few cases. Some solutions (x; y; z) are (3; 4; 5), (6; 8; 10) (boring! why?!), (5; 12; 13), (8;15; 17), :::
The general solution. (m2¡n2; 2mn;m2+n2) is a Pythagorean triple for any integers m;n.
These solutions plus scaling generate all Pythagorean triples!
For instance, m=2; n=1 produces (3; 4; 5), while m=3; n=2 produces (5; 12; 13).
Fermat's last theorem. For, n> 2, the diophantine equation xn+ yn= zn has no solutions!
Pierre de Fermat (1637) claimed in a margin of Diophantus' book Arithmetica that he had a proof (�I have
discovered a truly marvellous proof of this, which this margin is too narrow to contain.�).
It was �nally proved by Andrew Wiles in 1995 (using a connection to modular forms and elliptic curves).
This problem is often reported as the one with the largest number of unsuccessful proofs.

Example 49. (HW) Determine all solutions of 4x+7y= 67 with x and y positive integers.

Solution. We see that x=2, y=¡1 is a solution to 4x+7y=1 (you can, of course, use the Euclidean algorithm
if you wish).
Hence, a particular solution to 4x+7y= 67 is given by x= 134, y=¡67.
The general solution to 4x+7y= 67 is thus given by x= 134+7t, y=¡67¡ 4t, where t can be any integer.

� x> 0 if and only if 134+7t > 0 if and only if t >¡134
7
�¡19.14. That is, t=¡19;¡18; :::

� y > 0 if and only if ¡67¡ 4t > 0 if and only if t <¡67
4
=¡16.75. That is, t=¡17;¡18; :::

Hence, we get a solution (x; y) with positive integers x; y for t = ¡19; ¡18; ¡17. The three corresponding
solutions are: (1; 9), (8; 5), (15; 1).

5 Congruences

a� b (modn) means a= b+mn (for some m2Z)

In that case, we say that �a is congruent to b modulo n�.

� In other words: a� b (modn) if and only if a¡ b is divisible by n.

� In yet other words: a� b (modn) if and only if a and b leave the same remainder when dividing by n.

Example 50. 17� 5 (mod12) as well as 17� 29�¡7 (mod12)

Example 51. We will discuss in more detail that, and how, we can calculate with congruences.

Here is an appetizer: What is 2100 modulo 3? That is, what's the remainder upon division by 3?

Solution. 2�¡1 (mod3). Hence, 2100� (¡1)100=1 (mod3).
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Theorem 52. We can calculate with congruences.

� First of all, if a� b (modn) and b� c (modn), then a� c (modn).
In other words, being congruent is a transitive property.
Why? nj(b¡ a) and nj(c¡ b), then nj((b¡ a)+ (c¡ b))

=c¡a

.

Alternatively, we can note that each of a; b; c leaves the same remainder when dividing by n.

� If a� b (modn) and c� d (modn), then

(a) a+ c� b+ d (modn)
Why? (b+ d)¡ (a+ c)= (b¡ a) + (d¡ c) is indeed divisible by n
(because nj(b¡ a) and nj(d¡ c)).

(b) ac� bd (modn)
Why? bd¡ ac=(bd¡ bc) + (bc¡ ac)= b(d¡ c)+ c(b¡ a) is indeed divisible by n
(because nj(b¡ a) and nj(d¡ c)).

� In particular, if a� b (modn), then ak� bk (modn) for any positive integer k.

Example 53. Compute 36 � 75 (mod 11).
Solution. Since 36� 3 (mod11) and 75�¡2 (mod11), we have 36 �75� 3 � (¡2)=¡6� 5 (mod11).
Important comment. We do not need to compute that 36 �75=2700 (and then reduce modulo 11)! Our ability
to avoid computing large intermediate quantities is crucial for applications like cryptography.
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