Review. Prime number theorem

Theorem 37. The gaps between primes can be arbitrarily large.

Proof. Indeed, for any integer n > 1,

 $n! + 2, \quad n! + 3, \quad ..., \quad n! + n$

is a string of n-1 composite numbers. Why are these numbers all composite!?

Comment. Notice, however, how very large (compared to the gap) the numbers brought up in the proof are!

4 Diophantine equations

Diophantine equations are usual equations but we are only interested in integer solutions.

Example 38. Find the general solution to the diophantine equation 16x + 25y = 0.

Solution. The non-diophantine equation 16x + 25y = 0 has general solution (x, y) = (25t, -16t) where the parameter t is any real number.

We need to figure out for which t this results in a solution where both coordinates x = 25t and y = -16t are integers. Obviously, t needs to be a rational number. Since gcd(16, 25) = 1 the denominator of t must be 1, so that t must be an integer. In other words, the general solution to the diophantine equation 16x + 25y = 0 is (x, y) = (25t, -16t) where the parameter t is any integer.

Example 39. Find a solution to the diophantine equation 16x + 25y = 1.

Solution. Since gcd(16, 25) = 1, Bezout's theorem guarantees a solution, which we can find using the generalized Euclidean algorithm. Namely, in Example 19, we found that $-7 \cdot 25 + 11 \cdot 16 = 1$. In other words, we have found the solution x = 11 and y = -7. In short, $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 11 \\ -7 \end{bmatrix}$.

Are there other solutions?

Yes! For instance, x = -14 and y = 9.

What is the **general solution**?

Solution. In the previous example we determined that the general solution to the corresponding homogeneous (diophantine) equation 16x + 25y = 0 is $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 25 \\ -16 \end{bmatrix} t$ where the parameter t is any integer.

We can add these solutions to any **particular solution** of 16x + 25y = 1 to obtain the general solution to 16x + 25y = 1. Therefore, the general solution is

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 11 \\ -7 \end{bmatrix} + \begin{bmatrix} 25 \\ -16 \end{bmatrix} t = \begin{bmatrix} 11+25t \\ -7-16t \end{bmatrix},$$

where t is any integer.

Comment. Note that t = -1 results in $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 11-25 \\ -7+16 \end{bmatrix} = \begin{bmatrix} -14 \\ 9 \end{bmatrix}$, another solution that we observed earlier.

Example 40. Find the general solution to the diophantine equation 16x + 25y = 3.

Solution. It follows from the previous example that a particular solution is $\begin{bmatrix} x \\ y \end{bmatrix} = 3 \begin{bmatrix} 11 \\ -7 \end{bmatrix}$. Hence, the general solution is $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 33 \\ -21 \end{bmatrix} + \begin{bmatrix} 25 \\ -16 \end{bmatrix} t = \begin{bmatrix} 33+25t \\ -21-16t \end{bmatrix}$.

Example 41. Find the general solution to the diophantine equation 6x + 15y = 10.

Solution. This equation has no (integer) solution because the left-hand side is divisible by gcd(6, 15) = 3 but the right-hand side is not divisible by 3.

Lemma 42. Let $a, b \in \mathbb{Z}$ (not both zero). The diophantine equation ax + by = c has a solution if and only if c is a multiple of gcd(a, b).

Proof.

" \implies " (the "only if" part): Let $d = \gcd(a, b)$. Then d divides ax + by. This implies that d|c.

"" (the "if" part): This is a consequence of Bezout's identity.

Note that we can therefore focus on diophantine equations ax + by = c with gcd(a, b) = 1.

(Otherwise, just divide both sides by $\gcd{(a,b)}$.)

Theorem 43. The diophantine equation ax + by = c with gcd(a, b) = 1 has the general solution

$$\left[\begin{array}{c} x\\ y\end{array}\right] = \left[\begin{array}{c} x_0\\ y_0\end{array}\right] + \left[\begin{array}{c} b\\ -a\end{array}\right]t$$

where $t \in \mathbb{Z}$ is a parameter, and x_0, y_0 is any particular solution.

How to find a particular solution? Since gcd(a, b) = 1, we can find integers x_1, y_1 such that $ax_1 + by_1 = 1$ (this is Bezout's identity). Multiply both sides with c, to see that we can take $x_0 = cx_1$ and $y_0 = cy_1$.

Proof. First, let us consider the case of all real solutions. The general solution of ax + by = c (which describes a line!) can be described as $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + \begin{bmatrix} b \\ -a \end{bmatrix} t$.

Since gcd(a, b) = 1, this solution will be integers if and only if t is an integer.

Example 44. 56x + 72y = 2 has no integer solutions (because 8|(56x + 72y) but 8|2).

Example 45. Find the general solution to the diophantine equation 56x + 72y = 24.

Solution. We first note that this equation has an integer solution because 24 is a multiple of gcd(56, 72) = 8. To make our life easier, and to apply the theorem, we divide by 8 to get the equivalent equation 7x + 9y = 3. A solution to 7x + 9y = 1 is $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$ (and we can always find such a solution using the Euclidean algorithm). Therefore, a solution to 7x + 9y = 3 is $\begin{bmatrix} x \\ y \end{bmatrix} = 3 \cdot \begin{bmatrix} 4 \\ -3 \end{bmatrix} = \begin{bmatrix} 12 \\ -9 \end{bmatrix}$. In conclusion, the general solution is $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 12 \\ -9 \end{bmatrix} + \begin{bmatrix} 9 \\ -7 \end{bmatrix} t$.

Caution. Why would it be incorrect to state the general solution as $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 12 \\ -9 \end{bmatrix} + \begin{bmatrix} 72 \\ -56 \end{bmatrix} t$ for $t \in \mathbb{Z}$?