Sketch of Lecture 3 Tue, 8/27/2019

Lemma 15. If a=qb+r, then ged (a,b) =ged (b, 7).

Proof. Let d € N. We need to show that d|a and d|b iff d|r and d|b. [iff is short for “if and only if"]
Equivalently, assuming that d|b, we need to show that d|a iff d|r.

. a__gb+r __ qb r a e T
Indeed, it follows from 4= _F+E that EGZ |fFE€Z. O

Example 16. Using this lemma to compute gcd 's is referred to as the Euclidean algorithm.

(a) ged (30,108) =ged (18,30) =ged (12,18) =ged (6,12) =6
108=330+18 30=1.18112 18=1.1216  12=2.610

Alternatively, taking a shortcut by allowing negative remainders:
ged (30, 108) =ged (12, 30) =ged (6,12) =6
108—4.30—12  30—2.1246  12=2.640

(b) ged (16,25) =ged (9,16) =ged (7,9) =ged (2,7) =ged (1,2) =1
T25-1.1649  16=1.917  9=1.7+2  7=3.2+1

Alternatively, again, taking a shortcut by allowing negative remainders:
ged (16,25) =ged (7,16) =ged (2,7) =ged (1,2) =1
252167  16=27t2 7=32+1

Theorem 17. (Bézout’s identity) Let a,b& Z (not both zero). There exist ,y € Z such that
ged (a,b) =ax + by.

Proof. We proceed iteratively:

= q¢1b+7r, 0<ri<b

b = qgari+re, 0<ra<nr
r1 = q3ra+r3, 0<rz<ry
Tm—3 = qn-1Tn—-2+"n-1, 0<rn_1<Tn_—2
Tn—2 = qnTn—1+T7Tn, 0<Tn<7ﬂn71
Tn—1 = Qn+lrn+0
Along the way, we have gcd (a,b) =ged (b, 1) =ged (r1,72) =...=ged (rn—2,rn—1) =gcd (rpn—1,70) =7Tn

(why is it obvious that the last ged is 7, 7).

By the second-to-last equation, gcd (a, b) =ry, =75 _2 — gnrn—1 is a linear combination of 7, _2 and 75, _1.
Then, moving one up, we replace 1, _1 with r,,_3 — ¢n,— 17 _2 to write gcd (a, b) as a linear combination of
rn—3 and ry, _2. Continuing in that fashion, we ultimately obtain gcd (a,b) as a linear combination of @ and b. [J

Let us revisit the previous example to illustrate how the Euclidean algorithm provides us with a
way to write gcd (a, b) as an integer linear combination of a and b.
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Example 18. Find d=gcd (30, 108) as well as integers r, s such that d = 30r + 108s.
Solution. We apply the extended Euclidean algorithm:

gcd (30,108)  [108]=4:[30]—-12 or: 12=—1-[108]+4-[30]
= ged(12,30) [30]=2-[12]+6 6=1-[30]-2-[12]
=ged(6,12)  [12]=2:[6]+0

=6

Backtracking through this, we find that Bézout's identity takes the form

6 = 1:[30]-2-[12] = 1:[30]-2(—1-[108]+4:[30])=2-[108]—7-[30]
In summary, we have 2- 108 — 7-30=6.

Example 19. Find d=gcd (16,25) as well as integers 7, s such that d = 167 + 25s.
Solution. We apply the extended Euclidean algorithm:

ged (16,25)  [25]=2-[16]—-7 or: 7=—1-[25]+2-[16]
= ged(7,16)  [16]=2-[7]|+2 2=1-[16]-2[7]
=ged(2,7)  [7]=3-[2]+1 1=[7]-3-[2]

=1

Backtracking through this, we find that Bézout's identity takes the form

1 = [-302 = 7[[-3] = -7+

In summary, we have —7-254+11-16=1.

B

Example 20. (extra) Find d =gcd (17,23) as well as integers r, s such that d =17r 4 23s.
Solution. We apply the extended Euclidean algorithm:

ged (17,23) [23]=1-[17]+6 or 6=1-[23]-1-[17]
= ged(6,17) [17]=3-[6]—1 1=—1-[17]+3[6]

=1

Backtracking through this, we find that Bézout's identity takes the form

1= 1 [@+s 6] = —4[37]+3 %)

In summary, we have 1 =—-4-174 3 - 23.

2 Primes

Lemma 21. (Euclid’s lemma) If d|ab and gcd (a,d) =1, then d|b.
Proof. Since (a,d) =1, we can find z, y so that ax +dy =1.
We then see that b=abx + bdy is divisible by d (because d|ab). O

Definition 22. An integer p > 1 is a prime if its only positive divisors are 1 and p.

Lemma 23. If pis a prime and pl|ab, then pla or p|b.

Proof. If p|a, then we are done. Otherwise, p{a. In that case, gcd (a, p) =1 because the only positive divisors
of p are 1 and p. Our claim therefore is a special case of the previous lemma. (I

Corollary 24. If pis a prime and plajas---a,, then play for some k€ {1,2,...,r}.
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Example 25. This property is unique to primes. For instance, 6|8 -21 but 618 and 6421.
Whereas, 2|8 - 21 and, indeed 2|8. Similarly, 3|8 - 21 and, indeed 3|21.

Theorem 26. (Fundamental Theorem of Arithmetic) Every integer n > 1 can be written as
a product of primes. This factorization is unique (apart from the order of the factors).

Proof. Let us first prove, by (strong) induction, that every integer n > 1 can be written as a product of primes.
e (base case) n =2 is a prime. There is nothing to do.

e (induction step) Suppose that we already know that all integers less than n can be written as a product
of primes. We need to show that n can be written as a product of primes, too.

Let d > 1 be the smallest divisor of n. Then d is necessarily a prime (because if a > 1 divides d, then a
also divides n so that a = d because d is the smallest number dividing n).

If d=n, then n is a prime, and we are already done.

Otherwise, 2 > 1 is an integer, which, by the induction hypothesis, can be written as the product of some
primes p1---p,. Then, n=dp1:p.

Finally, let us think about why this factorization is unique. Suppose we have two factorizations
n=pip2-Pr=4qi192:--gs-

By the corollary, each p; divides one of the g;'s (and vice versa), in which case p; = g;, so we can cancel common
factors until we see that both factorizations are identical. 0

Comment. Have a look at Lecture #1 for some illustration that the idea of factorization into primes and the
uniqueness of such factorizations should not be taken entirely for granted.

The executive summary is that, when instead of integers a we work with “generalized integers” such as a + bi/5,
with a, b € Z, then factorization is not unique: for instance, we have two different factorizations of 6, namely,

6=2-3, 6=(1+1i/5)(1—1i/5),
and the numbers 2, 3, 1 £+ 4+/5 cannot be factored further.

Example 27. 140=22.5-7, 2016 =25-32-7, 2017 is a prime, 2018 =2-1009, 2019 =3-673

How can we check that 2017 is indeed prime? Well, none of the small primes 2,3,5,7,11 divide 2017. But
how far do we need to check? Since /2017 & 44.91, we only need to check up to prime 43. (Why?!)
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