
Sketch of Lecture 3 Tue, 8/27/2019

Lemma 15. If a= qb+ r, then gcd (a; b)= gcd (b; r).

Proof. Let d2N. We need to show that dja and djb i� djr and djb. [i� is short for �if and only if�]
Equivalently, assuming that djb, we need to show that dja i� djr.

Indeed, it follows from a

d
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Example 16. Using this lemma to compute gcd 's is referred to as the Euclidean algorithm.

(a) gcd (30; 108)
108=3�30+18

= gcd (18; 30)
30=1�18+12

= gcd (12; 18)
18=1�12+6

= gcd (6; 12)
12=2�6+0

=6

Alternatively, taking a shortcut by allowing negative remainders:

gcd (30; 108)
108=4�30¡12

= gcd (12; 30)
30=2�12+6

= gcd (6; 12)
12=2�6+0

=6

(b) gcd (16; 25)
25=1�16+9

= gcd (9; 16)
16=1�9+7

= gcd (7; 9)
9=1�7+2

= gcd (2; 7)
7=3�2+1

= gcd (1; 2)=1

Alternatively, again, taking a shortcut by allowing negative remainders:

gcd (16; 25)
25=2�16¡7

= gcd (7; 16)
16=2�7+2

= gcd (2; 7)
7=3�2+1

= gcd (1; 2)=1

Theorem 17. (Bézout's identity) Let a; b2Z (not both zero). There exist x; y 2Z such that

gcd (a; b)= ax+ by:

Proof. We proceed iteratively:

a = q1 b+ r1; 0<r1<b

b = q2 r1+ r2; 0<r2<r1

r1 = q3 r2+ r3; 0<r3<r2
���

rn¡3 = qn¡1 rn¡2+ rn¡1; 0<rn¡1<rn¡2

rn¡2 = qn rn¡1+ rn; 0<rn<rn¡1

rn¡1 = qn+1 rn+0

Along the way, we have gcd (a; b) = gcd (b; r1) = gcd (r1; r2) = :::= gcd (rn¡2; rn¡1) = gcd (rn¡1; rn) = rn
(why is it obvious that the last gcd is rn?).
By the second-to-last equation, gcd (a; b) = rn= rn¡2¡ qnrn¡1 is a linear combination of rn¡2 and rn¡1.
Then, moving one up, we replace rn¡1 with rn¡3¡ qn¡1rn¡2 to write gcd (a; b) as a linear combination of
rn¡3 and rn¡2. Continuing in that fashion, we ultimately obtain gcd(a;b) as a linear combination of a and b. �

Let us revisit the previous example to illustrate how the Euclidean algorithm provides us with a
way to write gcd (a; b) as an integer linear combination of a and b.
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Example 18. Find d= gcd (30; 108) as well as integers r; s such that d= 30r+ 108s.
Solution. We apply the extended Euclidean algorithm:

gcd (30; 108) 108 =4 � 30 ¡ 12 or: A 12=¡1 � 108 +4 � 30
= gcd(12; 30) 30 =2 � 12 +6 B 6=1 � 30 ¡ 2 � 12
= gcd(6; 12) 12 =2 � 6 +0

= 6

Backtracking through this, we �nd that Bézout's identity takes the form

6 = 1 � 30 ¡ 2 � 12 = 1 � 30 ¡ 2
¡
¡1 � 108 +4 � 30

�
=2 � 108 ¡ 7 � 30

B A

In summary, we have 2 � 108¡ 7 � 30=6.

Example 19. Find d= gcd (16; 25) as well as integers r; s such that d= 16r+ 25s.
Solution. We apply the extended Euclidean algorithm:

gcd (16; 25) 25 =2 � 16 ¡ 7 or: A 7=¡1 � 25 +2 � 16
= gcd(7; 16) 16 =2 � 7 +2 B 2= 1 � 16 ¡ 2 � 7
= gcd(2; 7) 7 = 3 � 2 + 1 C 1= 7 ¡ 3 � 2
= 1

Backtracking through this, we �nd that Bézout's identity takes the form

1 = 7 ¡ 3 � 2 = 7 � 7 ¡ 3 � 16 = ¡7 � 25 + 11 � 16
C B A

In summary, we have ¡7 � 25+ 11 � 16=1.

Example 20. (extra) Find d= gcd (17; 23) as well as integers r; s such that d= 17r+ 23s.
Solution. We apply the extended Euclidean algorithm:

gcd (17;23) 23 =1 � 17 +6 or: A 6=1 � 23 ¡ 1 � 17
= gcd(6;17) 17 =3 � 6 ¡ 1 B 1=¡1 � 17 +3 � 6
= 1

Backtracking through this, we �nd that Bézout's identity takes the form

1 = ¡1 � 17 +3 � 6 = ¡4 � 17 +3 � 23
B A

In summary, we have 1=¡4 � 17+3 �23.

2 Primes

Lemma 21. (Euclid's lemma) If djab and gcd (a; d)= 1, then djb.
Proof. Since (a; d) = 1, we can �nd x; y so that ax+ dy=1.
We then see that b= abx+ bdy is divisible by d (because djab). �

De�nition 22. An integer p> 1 is a prime if its only positive divisors are 1 and p.

Lemma 23. If p is a prime and pjab, then pja or pjb.
Proof. If pja, then we are done. Otherwise, p -a. In that case, gcd(a; p)= 1 because the only positive divisors
of p are 1 and p. Our claim therefore is a special case of the previous lemma. �

Corollary 24. If p is a prime and pja1a2���ar, then pjak for some k 2f1; 2; :::; rg.
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Example 25. This property is unique to primes. For instance, 6j8 � 21 but 6 - 8 and 6 - 21.
Whereas, 2j8 � 21 and, indeed 2j8. Similarly, 3j8 � 21 and, indeed 3j21.

Theorem 26. (Fundamental Theorem of Arithmetic) Every integer n> 1 can be written as
a product of primes. This factorization is unique (apart from the order of the factors).

Proof. Let us �rst prove, by (strong) induction, that every integer n> 1 can be written as a product of primes.

� (base case) n=2 is a prime. There is nothing to do.

� (induction step) Suppose that we already know that all integers less than n can be written as a product
of primes. We need to show that n can be written as a product of primes, too.
Let d> 1 be the smallest divisor of n. Then d is necessarily a prime (because if a > 1 divides d, then a
also divides n so that a= d because d is the smallest number dividing n).
If d=n, then n is a prime, and we are already done.
Otherwise, n

d
>1 is an integer, which, by the induction hypothesis, can be written as the product of some

primes p1���pr. Then, n= dp1���pr.

Finally, let us think about why this factorization is unique. Suppose we have two factorizations

n= p1p2���pr= q1q2���qs:

By the corollary, each pi divides one of the qj's (and vice versa), in which case pi= qj, so we can cancel common
factors until we see that both factorizations are identical. �

Comment. Have a look at Lecture #1 for some illustration that the idea of factorization into primes and the
uniqueness of such factorizations should not be taken entirely for granted.
The executive summary is that, when instead of integers a we work with �generalized integers� such as a+ bi 5

p
,

with a; b2Z, then factorization is not unique: for instance, we have two di�erent factorizations of 6, namely,

6=2 � 3; 6= (1+ i 5
p

)(1¡ i 5
p

);

and the numbers 2, 3, 1� i 5
p

cannot be factored further.

Example 27. 140=22 � 5 � 7, 2016=25 � 32 � 7, 2017 is a prime, 2018=2 � 1009, 2019=3 � 673
How can we check that 2017 is indeed prime? Well, none of the small primes 2; 3; 5; 7;11 divide 2017. But
how far do we need to check? Since 2017

p
� 44.91, we only need to check up to prime 43. (Why?!)
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