
Sketch of Lecture 23 Tue, 12/4/2018

19 Basic proof techniques

19.1 Proofs by contradiction

Example 150. 5
p

is not rational.
Proof. Assume (for contradiction) that we can write 5

p
=

n

m
with n;m2N. By canceling common factors,

we can ensure that this fraction is reduced.
Then 5m2 = n2, from which we conclude that n is divisible by 5. Write n = 5k for some k 2 N. Then
5m2=(5k)2 implies thatm2=5k2. Hence,m is also divisible by 5. This contradicts the fact that the fraction
n/m is reduced. Hence, our initial assumption must have been wrong. �

Variations. Does the same proof apply to, say, 7
p

? Which step of the proof fails for 4
p

?

19.2 A famous example of a direct proof

Example 151. (Gauss) 1+2+ :::+n=
n(n+1)

2

Proof. Write s(n)= 1+2+ :::+n.
2s(n)=(1+2+ :::+n)+ (n+(n¡1)+ :::+1)=(1+n)+(2+n¡ 1)+ :::+(n+1)=n � (n+1). Done! �

Anecdote. 9 year old Gauss (1777-1855) and his classmates were tasked to add the numbers 1 to 100 (and
not bother their teacher while doing so). Gauss was not writing much on his slate::: just the �nal answer: 5050.

19.3 Proofs by induction

(induction) To prove that CLAIM(n) is true for all integers n>n0, it su�ces to show:

� (base case) CLAIM(n0) is true.

� (induction step) If CLAIM(n) is true for some n, then CLAIM(n+1) is true as well.

[We may even assume that CLAIM(n0);CLAIM(n0+1); :::;CLAIM(n) are all true.]

Why does this work? By the base case, CLAIM(n0) is true. Thus, by the induction step, CLAIM(n0+1)
is true. Applying the induction step again shows that CLAIM(n0+2) is true, :::

Example 152. (Gauss, again) For all integers n> 1, 1+2+ :::+n=
n(n+1)

2
.

Proof. Again, write s(n)= 1+2+ :::+n.
CLAIM(n) is that s(n)= n(n+1)

2
.

� (base case) CLAIM(1) is that s(1)= 1(1+ 1)

2
=1. That's true.

� (induction step) Assume that CLAIM(n) is true (the induction hypothesis).

s(n+1)= s(n)+ (n+1)=
n(n+1)

2
this is where we use

the induction hypothesis

+(n+1)=
(n+1)(n+2)

2

This shows that CLAIM(n+1) is true as well.

By induction, the formula is therefore true for all integers n> 1. �
Comment. The claim is also true for n=0 (if we interpret the left-hand side correctly).
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Example 153. Induction is not only a proof technique but also a common way to de�ne things.

� The factorial n! can be de�ned inductively (i.e. recursively) by

0!= 1; (n+1)!=n! � (n+1):

Comment. This may not seem impressive, because we can �spell out� n!=1 �2 �3���(n¡1)n directly.

� The Fibonacci numbers Fn are de�ned inductively (i.e. recursively) by

F0=0; F1=1; Fn+1=Fn+Fn¡1:

Getting a feeling. F2=F1+F0=1, F3=F2+F1=2, F4=3, F5=5, F6=8, F7= 13, :::

Comment. Though not at all obvious, there is a way to compute Fn directly. Let '= 1+ 5
p

2
�1.618.

Then Fn=
�
'n/ 5

p �
. Try it! For instance, '10/ 5

p
�55.0036. That seems like magic at �rst. But

it is the beginning of a general theory (look up, for instance, Binet's formula and C-�nite sequences).
Also, recall that we observed that Fn+1/Fn are the convergents of the continued fraction for '.

Example 154. Let us prove that Fn< 2n for all integers n> 0.
Getting a feeling. 0< 1, 1< 2, 1< 4, 2< 8, 3< 16, 5< 32, 8< 64 (seems like the claim is �very� true)

Note that our observation from continued fractions implies that limn!1
Fn+1

Fn
= '� 1.618.

In other words, Fn is indeed growing exponentially (but 1.618< 2)!

(In particular, say, Fn>n1000 for large enough n, so we should be careful only looking at the �rst few cases.)

Proof.

� base cases: F0=0< 20=1, F1=1< 21=2.

� induction step: suppose that Fm< 2m for all integers m2f1; 2; :::; ng. (strong induction!)
We need to show that Fn+1< 2n+1.

Fn+1=Fn+Fn¡1<
(IH) 2n+2n¡1< 2n+2n=2n+1 �

Important note. Why was it necessary to consider two base cases?

Example 155. (sum of squares) For all integers n> 1, 12+22+ :::+n2=
n(n+1)(2n+1)

6
.

Proof. Write t(n)= 12+22+ :::+n2.
We use induction on the claim t(n)=

n(n+1)(2n+1)

6
.

� The base case (n=1) is that t(1)=1. That's true.

� For the inductive step, assume the formula holds for some value of n.
We need to show the formula also holds for n+1.

t(n+1) = t(n)+ (n+1)2

(using the induction hypothesis) =
n(n+1)(2n+1)

6
+ (n+1)2

=
(n+1)
6

[2n2+n+6n+6]

=
(n+1)
6

(n+2)(2n+3)

This shows that the formula also holds for n+1.

By induction, the formula is true for all integers n> 1. �
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Example 156. Observe the following connection with our sums and integrals from calculus:

�
Z
0

n

xdx=
n2

2
versus

X
x=0

n

x=1+2+ :::+n=
n(n+1)

2
=
n2

2
+ lower order terms

�
Z
0

n

x2dx=
n3

3
versus

X
x=0

n

x2=12+22+ :::+n2=
n(n+1)(2n+1)

6
=
n3

3
+ lower order terms

�
Z
0

n

x3dx=
n4

4
versus

X
x=0

n

x3=13+23+ :::+n3=

�
n(n+1)

2

�
2

=
n4

4
+ lower order terms

The connection makes sense: the integrals give areas below curves, and the sums are approximations to these
areas (rectangles of width 1).

Example 157. There are irrational numbers x and y such that xy is rational.
Proof. Let x= 2

p
and y= 2

p
(which are both irrational). There is two possibilities:

� 2
p 2

p
is rational. In that case, we can take x= 2

p
and y= 2

p
, and are done.

� 2
p 2

p
is irrational. In that case, we can take x= 2

p 2
p

and y= 2
p

.

(Note that xy=
�

2
p 2

p �
2

p
= 2
p 2

p
� 2
p

= 2
p 2

=2 is rational.) �

Note. We have proved that there are irrational numbers x and y such that xy is rational. Yet, in our argument,
we have not produced a single example that we are sure about!
Logically, we used the law of the excluded middle.

In fact, 2
p 2

p
is irrational (even transcendental) but this is much harder to prove.

See, for instance: http://math.stackexchange.com/questions/446647/irrationality-of-sqrt2-sqrt2

Example 158. (�all horses have the same color�) We will prove that all horses are the same
color.
�Proof�. We will prove by induction that, in any group of n horses, they all have the same color.

� The base case (n=1) of groups of 1 horse is trivially true.

� For the induction step, we assume that (for �xed n), in any group of n horses, they all have the same
color. We will show that, in any group of n+1 horses, they also all have the same color.
Line up your n+1 horses. The �rst n horses all have the same color by the induction hypothesis.
Also, the last n horses all have the same color by the induction hypothesis.
So, the �rst horse has the same color as the horses in the middle, and these have the same color as
the last horse. Hence, all n+1 of them have the same color.

What's wrong? We are talking about �horses in the middle�. This is no problem for >3 many horses, but
there is no middle horses for 2 horses. The induction step argument does not apply if n=1.
Comment. There is a wikipedia entry with the title �all horses have the same color�. Using that language,
this �paradox� is due to George Pólya.
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