11 Chinese remainder theorem

Example 84. (warmup)

- (a) If $x \equiv 3 \pmod{10}$, what can we say about $x \pmod{5}$?
- (b) If $x \equiv 3 \pmod{7}$, what can we say about $x \pmod{5}$?

Solution.

- (a) If $x \equiv 3 \pmod{10}$, then $x \equiv 3 \pmod{5}$. [Why?! Because $x \equiv 3 \pmod{10}$ if and only if x = 3 + 10m, which modulo 5 reduces to $x \equiv 3 \pmod{5}$.]
- (b) Absolutely nothing! x = 3 + 7m can be anything modulo 5 (because $7 \equiv 2$ is invertible modulo 5).

Example 85. If $x \equiv 32 \pmod{35}$, then $x \equiv 2 \pmod{5}$, $x \equiv 4 \pmod{7}$.

Why?! As in the first part of the warmup, if $x \equiv 32 \pmod{35}$, then $x \equiv 32 \pmod{5}$ and $x \equiv 32 \pmod{5}$.

The Chinese remainder theorem says that this can be reversed!

That is, if $x \equiv 2 \pmod{5}$ and $x \equiv 4 \pmod{7}$, then the value of x modulo $5 \cdot 7 = 35$ is determined. [How to find the exact $x \equiv 32 \pmod{35}$ is discussed in the next example.]

Example 86. Solve $x \equiv 2 \pmod{5}$, $x \equiv 4 \pmod{7}$.

Solution. $x \equiv 2 \cdot 7 \cdot 7_{\text{mod } 5}^{-1} + 4 \cdot 5 \cdot 5_{\text{mod } 7}^{-1} \equiv 42 + 60 \equiv 32 \pmod{35}$

Important comment. Can you see how we need 5 and 7 to be coprime here?

Brute force solution. Note that, while in principle we can always perform a brute force search, this is not practical for larger problems. Here, if x is a solution, then so is x + 35. So we only look for solutions modulo 35. Since $x \equiv 4 \pmod{7}$, the only candidates for solutions are 4, 11, 18, ... Among these, we find x = 32. [We can also focus on $x \equiv 2 \pmod{5}$ and consider the candidates 2, 7, 12, ..., but that is even more work.]

Theorem 87. (Chinese Remainder Theorem) Let $n_1, n_2, ..., n_r$ be positive integers with $gcd(n_i, n_j) = 1$ for $i \neq j$. Then the system of congruences

 $x \equiv a_1 \pmod{n_1}, \quad \dots, \quad x \equiv a_r \pmod{n_r}$

has a simultaneous solution, which is unique modulo $n = n_1 \cdots n_r$.

In other words. The Chinese remainder theorem provides a bijective (i.e., 1-1 and onto) correspondence

 $x \pmod{nm} \mapsto \left[\begin{array}{c} x \pmod{n} \\ x \pmod{m} \end{array} \right].$

For instance. Let's make the correspondence explicit for n = 2, m = 3: $0 \mapsto \begin{bmatrix} 0 \\ 0 \end{bmatrix}, 1 \mapsto \begin{bmatrix} 1 \\ 1 \end{bmatrix}, 2 \mapsto \begin{bmatrix} 0 \\ 2 \end{bmatrix}, 3 \mapsto \begin{bmatrix} 1 \\ 0 \end{bmatrix}, 4 \mapsto \begin{bmatrix} 0 \\ 1 \end{bmatrix}, 5 \mapsto \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Armin Straub straub@southalabama.edu **Example 88.** Here's a graphical representation for n = 3, m = 5. Do you see the pattern?

			(1	nod	(5)					$(\mathrm{mod}5)$				
		0	1	2	3	4				0	1	2	3	4
	0	0	6		3		$\sim \rightarrow$		0	0	6	12	3	9
$(\mathrm{mod}3)$	1		1	÷.,		4		(mod 3)	1	10	1	7	13	4
	2	5		2	÷.,				2	5	11	2	8	14

Example 89. Solve $x \equiv 1 \pmod{4}$, $x \equiv 2 \pmod{5}$, $x \equiv 3 \pmod{7}$.

Solution. $x \equiv 1 \cdot 5 \cdot 7 \cdot [(5 \cdot 7)_{\text{mod } 4}^{-1}] + 2 \cdot 4 \cdot 7 \cdot [(4 \cdot 7)_{\text{mod } 5}^{-1}] + 3 \cdot 4 \cdot 5 \cdot [(4 \cdot 5)_{\text{mod } 7}^{-1}]$ $\equiv 105 + 112 - 60 = 157 \equiv 17 \pmod{140}.$

Silicon slave labor. Once you are comfortable doing it by hand, you can easily let Sage do the work for you:

Sage] crt([1,2,3], [4,5,7])

17

Example 90. Solve $x \equiv 2 \pmod{3}$, $3x \equiv 2 \pmod{5}$, $5x \equiv 2 \pmod{7}$.

Solution. Note that $3^{-1} \equiv 2 \pmod{5}$ and $5^{-1} \equiv 3 \pmod{7}$. Hence, we can simplify the congruences to $x \equiv 2 \pmod{3}$, $x \equiv 2 \cdot 2 \equiv -1 \pmod{5}$, $x \equiv 2 \cdot 3 \equiv -1 \pmod{7}$. Using the CRT, $x \equiv 2 \cdot 5 \cdot 7 \cdot \left[(5 \cdot 7)^{-1}_{\text{mod } 3} \right] - 1 \cdot 3 \cdot 7 \cdot \left[(3 \cdot 7)^{-1}_{\text{mod } 5} \right] - 1 \cdot 3 \cdot 5 \cdot \left[(3 \cdot 5)^{-1}_{\text{mod } 7} \right]$ $= 140 - 21 - 15 = 104 \equiv -1 \pmod{105}.$

Example 91. (extra)

- (a) Solve $x \equiv 2 \pmod{4}$, $x \equiv 3 \pmod{25}$.
- (b) Solve $x \equiv -1 \pmod{4}$, $x \equiv 2 \pmod{7}$, $x \equiv 0 \pmod{9}$.

Solution. (final answer only)

- (a) $x \equiv 78 \pmod{100}$
- (b) $x \equiv 135 \pmod{252}$

Example 92.

- (a) Let p > 3 be a prime. Show that $x^2 \equiv 9 \pmod{p}$ has exactly two solutions (i.e. ± 3).
- (b) Let p, q > 3 be distinct primes. Show that $x^2 \equiv 9 \pmod{pq}$ always has exactly four solutions (± 3 and two more solutions $\pm a$).

Solution.

- (a) If $x^2 \equiv 9 \pmod{p}$, then $0 \equiv x^2 9 = (x 3)(x + 3) \pmod{p}$. Since p is a prime it follows that $x 3 \equiv 0 \pmod{p}$ or $x + 3 \equiv 0 \pmod{p}$. That is, $x \equiv \pm 3 \pmod{p}$.
- (b) By the CRT, we have x² ≡ 9 (mod pq) if and only if x² ≡ 9 (mod p) and x² ≡ 9 (mod q). Hence, x ≡ ±3 (mod p) and x ≡ ±3 (mod q). These combine in four different ways.
 For instance, x ≡ 3 (mod p) and x ≡ 3 (mod q) combine to x ≡ 3 (mod pq). However, x ≡ 3 (mod p) and x ≡ -3 (mod q) combine to something modulo pq which is different from 3 or -3.

Why primes >3? Why did we exclude the primes 2 and 3 in this discussion? Comment. There is nothing special about 9. The same is true for $x^2 \equiv a^2 \pmod{pq}$ for any integer a.