6 Fermat's little theorem

Example 62. (warmup) What a terrible blunder... Explain what is wrong!

(incorrect!) $10^9 \equiv 3^2 = 9 \equiv 2 \pmod{7}$

Solution. $10^9 = 10 \cdot 10 \cdot ... \cdot 10 \equiv 3 \cdot 3 \cdot ... \cdot 3 = 3^9$. Hence, $10^9 \equiv 3^9 \pmod{7}$.

However, there is no reason, why we should be allowed to reduce the exponent by 7 (and it is incorrect).

Corrected calculation. $3^2 \equiv 2$, $3^4 \equiv 4$, $3^8 \equiv 16 \equiv 2$. Hence, $3^9 = 3^8 \cdot 3^1 \equiv 2 \cdot 3 \equiv -1 \pmod{7}$.

By the way, this approach of computing powers via exponents that are 2, 4, 8, 16, 32, ... is called **binary** exponentiation. It is crucial for efficiently computing large powers (see below).

Corrected calculation (using Fermat). $3^6 \equiv 1 \pmod{7}$ just like $3^0 = 1$. Hence, we are allowed to reduce exponents modulo 6. Consequently, $3^9 \equiv 3^3 \equiv -1 \pmod{7}$.

Theorem 63. (Fermat's little theorem) Let p be a prime, and suppose that $p \nmid a$. Then

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof. The first p-1 multiples of a,

a, 2a, 3a, ..., (p-1)a

are all different modulo p. (Otherwise, $ra \equiv sa \pmod{p}$ for some $r, s \in \{1, 2, ..., p-1\}$. Since p is prime, this implies $r \equiv s \pmod{p}$.) Clearly, none of them is divisible by p.

Consequently, these values must be congruent (in some order) to the values 1, 2, ..., p-1 modulo p. Thus,

 $a\cdot 2a\cdot 3a\cdot\ldots\cdot (p-1)a\equiv 1\cdot 2\cdot 3\cdot\ldots\cdot (p-1) \pmod{p}.$

Cancelling the common factors (allowed because p is prime!), we get $a^{p-1} \equiv 1 \pmod{p}$.

Remark. The "little" in this theorem's name is to distinguish this result from Fermat's last theorem that $x^n + y^n = z^n$ has no integer solutions if n > 2 (only recently proved by Wiles).

Comment. An alternative proof based on induction is given in our book (bottom of page 88).

Example 64. What is 2^{100} modulo 3? That is, what is the remainder upon division by 3? Solution. $2 \equiv -1 \pmod{3}$. Hence, $2^{100} \equiv (-1)^{100} \equiv 1 \pmod{3}$.

Careful! Once more, it is incorrect to reduce the exponent modulo $3! \ 100 \equiv 1 \pmod{3}$ but $2^{100} \not\equiv 2^1 \pmod{3}$. **Comment.** However, since we are working modulo a prime, p=3, Fermat's little theorem does allow us to reduce the exponent modulo p-1=2. Indeed, $2^{100} \equiv 2^0 \equiv 1 \pmod{3}$.

Example 65. Compute $3^{1003} \pmod{101}$.

Solution. Since 101 is a prime, $3^{100} \equiv 1 \pmod{101}$ by Fermat's little theorem. Therefore, $3^{1003} = 3^{10 \cdot 100} \cdot 3^3 \equiv 3^3 = 27 \pmod{101}$.

Important comment. Note that, because of Fermat's little theorem, we can reduce the exponent modulo 100 when calculating modulo 101. In particular, since $1003 \equiv 3 \pmod{100}$, we have $3^{1003} \equiv 3^3 = 27 \pmod{101}$.

7 Binary exponentiation

Example 66. Compute $3^{32} \pmod{101}$.

Solution. Fermat's little theorem is not helpful here. $3^2 = 9$, $3^4 = 81 \equiv -20$, $3^8 \equiv (-20)^2 = 400 \equiv -4$, $3^{16} \equiv (-4)^2 \equiv 16$, $3^{32} \equiv 16^2 \equiv 54$, all modulo 101 **Example 67.** Compute $3^{25} \pmod{101}$.

Solution. Fermat's little theorem is not helpful here.

Instead, we do what is called **binary exponentiation**:

 $3^2 = 9, \ 3^4 = 81 \equiv -20, \ 3^8 \equiv (-20)^2 = 400 \equiv -4, \ 3^{16} \equiv (-4)^2 \equiv 16, \ \text{all modulo } 101$

Since 25 = 16 + 8 + 1, we have $3^{25} = 3^{16} \cdot 3^8 \cdot 3^1 \equiv 16 \cdot (-4) \cdot 3 = -192 \equiv 10 \pmod{101}$.

Every integer $n \ge 0$ can be written as a sum of distinct powers of 2 (in a unique way). Therefore our approach to compute powers always works. It is called **binary exponentiation**.

Because $25 = 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$, we will write $25 = (11001)_2$.

8 Representations of integers in different bases

Example 68. We are commonly using the **decimal system** of writing numbers:

$$1234 = 4 \cdot 10^0 + 3 \cdot 10^1 + 2 \cdot 10^2 + 1 \cdot 10^3.$$

10 is called the base, and 1, 2, 3, 4 are the digits in base 10. To emphasize that we are using base 10, we will write $1234 = (1234)_{10}$. Likewise, we write

$$(1234)_b = 4 \cdot b^0 + 3 \cdot b^1 + 2 \cdot b^2 + 1 \cdot b^3.$$

In this example, b > 4, because, if b is the base, then the digits have to be in $\{0, 1, ..., b - 1\}$.

Example 69. Express 25 in base 2.

Solution. We already noticed that $25 = 16 + 8 + 1 = 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$. Hence, $25 = (11001)_2$. Alternatively, here's how we could have determined the digits without prior knowledge:

- $25 = 12 \cdot 2 + 1$. Hence, $25 = (\dots 1)_2$ where \dots are the digits for 12.
- $12 = 6 \cdot 2 + 0$. Hence, $25 = (...01)_2$ where ... are the digits for 6.
- $6=3\cdot 2+0$. Hence, $25=(...001)_2$ where ... are the digits for 3.
- $3 = 1 \cdot 2 + 1$, with 1 left over. Hence, $25 = (11001)_2$.

Example 70. Express 49 in base 2.

Solution.

- $49 = 24 \cdot 2 + 1$. Hence, $49 = (...1)_2$ where ... are the digits for 24.
- $24 = 12 \cdot 2 + 0$. Hence, $49 = (...01)_2$ where ... are the digits for 12.
- $12 = 6 \cdot 2 + 0$. Hence, $49 = (...001)_2$ where ... are the digits for 6.
- $6 = 3 \cdot 2 + 0$. Hence, $49 = (...0001)_2$ where ... are the digits for 3.
- $3 = 1 \cdot 2 + 1$, with 1 left over. Hence, $49 = (110001)_2$.

Other bases. What is 49 in base 3? $49 = 16 \cdot 3 + 1$, $16 = 5 \cdot 3 + 1$, $5 = 1 \cdot 3 + 2$, 1. Hence, $49 = (1211)_3$. What is 49 in base 7? $49 = (100)_7$.