
Sketch of Lecture 7 Thu, 9/13/2018

Example 55. (review) Solve 16x� 4 (mod25).
Solution. We �rst �nd 16¡1 (mod25). Bézout's identity: ¡7 � 25+ 11 �16.
Reducing this modulo 25, we get 11 �16� 1 (mod25).
Hence, 16¡1� 11 (mod25).
It follows that 16x� 4 (mod25) has the (unique) solution x� 16¡1 � 4� 11 � 4� 19 (mod25).

Example 56. Solve the system

7x+3y � 10 (mod16)
2x+5y � 9 (mod16):

Solution. As a �rst step we solve the system:

7x+3y = 10
2x+5y = 9

However you prefer solving this system (two options below), you will �nd the unique solution x= 23
29 , y=

43
29 .

To obtain a solution to the congruences modulo 16, all we have to do is to determine 29¡1 (mod 16) and
then use that to reinterpret the solution we just obtained.
29¡1� (¡3)¡1�5 (mod16). Thus, x=29¡1 �23�5 �7�3 (mod16) and y=29¡1 �43�5 �11�7 (mod16).
Comment. We should check our answer: 7 � 3+ 3 � 7= 42� 10 (mod16), 2 � 3+5 � 7= 41� 9 (mod16).

A naive way to solve 2� 2 systems. To solve 7x+3y= 10, 2x+5y=9, we can use the second equation
to write x= 9

2
¡ 5

2
y and substitute that into the �rst equation: 7

�
9

2
¡ 5

2
y
�
+ 3y = 10, which simpli�es to

63
2
¡ 29

2
y=10. This yields y= 43

29
. Using that value in, say, the �rst equation, we get 7x+3 � 43

29
=10, which

results in x= 23
29 .

Solving 2� 2 systems using matrix inverses. The equations 7x+3y=10, 2x+5y=9 can be expressed as�
7 3
2 5

��
x
y

�
=

�
10
9

�
;

assuming we are familiar with the basic matrix-vector calculus. A solution is then given by�
x
y

�
=

�
7 3
2 5

�¡1� 10
9

�
=

1
35¡ 6

�
5 ¡3
¡2 7

��
10
9

�
=

1
29

�
23
43

�
:

Here, we used that �
a b
c d

�¡1
=

1
ad¡ bc

�
d ¡b
¡c a

�
;

one of the few formulas worth memorizing.
Advanced comment. It follows from the matrix inverse discussion that the system

ax+ by � r (modn)
cx+ dy � s (modn)

has a unique solution modulo n if gcd(ad¡ bc; n)= 1.

The matrix
�
a b
c d

�
is invertible if and only if ad¡ bc=/ 0 (that is, ad¡ bc is invertible).

The matrix
�
a b
c d

�
is invertible modulo n if and only if gcd(ad¡ bc; n) = 1 (that is, ad¡ bc is invertible modulo n).

Comment. You can also see Theorem 4.9 and Example 4.11 in our textbook for a direct approach modulo 16.
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Example 57. (extra) Solve the system

2x¡ y � 7 (mod15)
3x+4y � ¡2 (mod15):

Solution. As a �rst step we solve the system:

2x¡ y = 7

3x+4y = ¡2

You can solve the system any way you like. For instance, using a matrix inverse, we �nd�
x
y

�
=

�
2 ¡1
3 4

�¡1� 7
¡2

�
=

1
11

�
4 1
¡3 2

��
7
¡2

�
=

1
11

�
26
¡25

�
:

To obtain a solution to the congruences modulo 15, we determine that 11¡1�¡4 (mod15) (you might be
able to see this modular inverse; in any case, practice using the Euclidean algorithm to compute these).
Therefore, x= 11¡1 �26�¡4 �11� 1 (mod15) and y= 11¡1 � (¡25)�¡4 � 5� 10 (mod15).
Check our answer. 2 � 1¡ 10=¡8� 7 (mod15), 3 � 1+4 � 10= 43�¡2 (mod15).

5 More on primes

Example 58. (Euclid) There are in�nitely many primes.

Proof. Assume (for contradiction) there is only �nitely many primes: p1; p2; :::; pn.
Consider the number N = p1 � p2 � ::: � pn+1.
Each prime pi divides N ¡ 1 and so pi does not divide N .
Thus any prime dividing N is not on our list. Contradiction. �

Historical note. This is not necessarily a proof by contradiction, and Euclid (300BC) himself didn't state
it as such. Instead, one can think of it as a constructive machinery of producing more primes, starting from
any �nite collection of primes.
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