Sketch of Lecture 6 Tue, 9/11/2018

' 4.1 Congruences: modular inverses |

Review. Last time, we saw that ac=bc (modn) does not always imply a=b (modn).
For instance, 2-4=2-1 (mod6) but 4#1 (mod6).
The reason is that 2 is not invertible modulo 6.

The issue is that 2|6 which results in 2-3=0 (mod6).

Let us briefly discuss residues that are invertible modulo n.

Example 46. Note that 3-7=1 (mod 10). Hence, we write 3! =7 (mod 10) and say that 7
is the modular inverse of 3 modulo 10.

Comment. As expected, we have (z7!)~! =2 (modn). Here, (371)"1=7"1=3 (mod 10).

Example 47. Determine 4~ (mod 13).
Brute force solution. We need to find a residue x such that 4z =1 (mod 13). We can try the values 0, 1,
2,3, ...,12 and find that =10 is the only solution modulo 13 (because 4-10=1 (mod 13)).

This approach may be fine for small examples when working by hand, but is not practical for serious congru-
ences. On the other hand, the Euclidean algorithm, reviewed below, can compute modular inverses extremely
efficiently.

Glancing. In this special case, we can actually see the solution if we notice that 4 - 3 = 12, so that
4-3=—1 (mod 13) and therefore 4~! = —3 (mod 13). [Or, equivalently, —4~'=10 (mod 13).]

Solution. Since ged(4,13) =1, Bézout's identity promises that 4r + 13s =1 for some integers r, s. Reducing
4r 4 135 =1 modulo 13, we find 4r =1 (mod 13), so that 4~ ' =7 (mod 13).

Using the Euclidean algorithm, we find, for instance, » =10 and s = —3. Hence, 4-1=10 (mod 13).

Example 48. Determine 16~ (mod 25).
Solution. Using the Euclidean algorithm, in Example 14, we found that 11-16—7-25=1.
Reducing that modulo 25, we get 11-16=1 (mod 25).
Hence, 16! =11 (mod 25).

Let a,b € 7Z, not both zero. Recall that the diophantine equation ax + by = ¢ has a solution if
and only if ¢ is a multiple of ged(a,b). In particular, az + by =1 has a solution if and only if
ged(a,b) =1.

Lemma 49. a is invertible modulo n if and only if ged(a,n)=1.

Proof. The congruence ax =1 (mod n) is equivalent to az + ny = 1 where y is some integer. Note that
ax+mn=1is a diophantine equation (we are looking for integer solutions z, y) and that it has a solution
if and only if gcd(a,n) =1. (]

Corollary 50. Let p be a prime. Then all nonzero residues are invertible modulo p.

Advanced comment. It is common to write Z /nZ for the set of all residues modulo n. The fact that we
can add an multiply as usual, makes Z/nZ into a (finite) ring.

Let p be a prime. The fact that, in addition, all nonzero residues are invertible makes Z / pZ into a (finite)
field. The fields we are familiar with, such as @Q (rationals), R (reals), C (complex numbers) are all infinite.

Example 51. List all invertible residues modulo 10.
Solution. 1,3,7,9
(We start with all residues 0,1,2,...,9 and only keep those which have no common divisor with 10.)
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4.2 Linear congruences

Let us consider the linear congruence az =b (modn), where we are looking for solutions x.

We will regard solutions x1,x2 as the same if 21 =xz2 (modn).

Example 52. Solve 4z =5 (mod 13).

Solution. From an earlier problem, we know that 4! = —3 (mod 13).
Hence, r=4"!.5=-3.5=—2 (mod 13).
Example 53.

(a) 3z=2 (mod7) has the solution x =3. We regard = =10 or x =17 as the same solution.
We therefore write that x =3 (mod 7) is the unique solution to the equation.

(b) 3x=2 (mod9) has no solutions z.

Why? Reducing 3z =24 9m modulo 3, we get 0 =2 (mod 3) which is a contradiction.
Just to make sure! Why does the same argument not apply to 3z =2 (mod 7)?

(c) 6x=3 (mod9) has solutions z =2, x =5, z=38.
6x =34 9m is equivalent to 2z =1+ 3m or 2z =1 (mod 3). Which has solution z =2 (mod 3).
Theorem 54. Consider the linear congruence ax =b (modn). Let d=gcd(a,n).
(a) The linear congruence has a solution if and only if d|b.

(b) If d=1, then there is a unique solution modulo 7.

(c) If d

(In fact, it has a unique solution modulo n /d.)

b, then it has d different solutions modulo n.

Proof.

(a) Finding z such that az =0 (modn) is equivalent to finding =, y such that axz +ny=2.

The latter is a diophantine equation of the kind we studied earlier. In particular, we know that it has
a solution if and only if gcd(a,n) divides b.

(b) If d =1, then a is invertible modulo n. Multiplying the congruence ax = b (mod n) with a=1!, we
obtain z =a"'b (modn). That's the unique solution.

Alternatively. If d=1, then ax + ny =10 has general solution x =x9+tn, y=yo —ta (where o, yo
is some particular solution). But, modulo n, all of these lead to the same solution z =z (modn).

(c) If d|b, then ax =b (modn) is equivalent to ajx =b; (modni) with a1 = %, by = %, ny= %. (Make
sure you see why! Spell out the congruences as equalities.) Since gcd(ai, n1) = 1, we get a unique

solution x modulo nj.

Being congruent to 2 modulo n; is the same as being congruent to one of z,x +n1,...,2+ (d—1)ny
modulo n. (]
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