# **Sketch of Lecture 6**

## 4.1 Congruences: modular inverses

**Review.** Last time, we saw that  $ac \equiv bc \pmod{n}$  does not always imply  $a \equiv b \pmod{n}$ . For instance,  $2 \cdot 4 \equiv 2 \cdot 1 \pmod{6}$  but  $4 \not\equiv 1 \pmod{6}$ .

The reason is that 2 is not invertible modulo 6.

The issue is that 2|6 which results in  $2 \cdot 3 \equiv 0 \pmod{6}$ .

Let us briefly discuss residues that are invertible modulo n.

**Example 46.** Note that  $3 \cdot 7 \equiv 1 \pmod{10}$ . Hence, we write  $3^{-1} \equiv 7 \pmod{10}$  and say that 7 is the **modular inverse** of 3 modulo 10.

**Comment.** As expected, we have  $(x^{-1})^{-1} \equiv x \pmod{n}$ . Here,  $(3^{-1})^{-1} \equiv 7^{-1} \equiv 3 \pmod{10}$ .

# **Example 47.** Determine $4^{-1} \pmod{13}$ .

Brute force solution. We need to find a residue x such that  $4x \equiv 1 \pmod{13}$ . We can try the values 0, 1, 2, 3, ..., 12 and find that x = 10 is the only solution modulo 13 (because  $4 \cdot 10 \equiv 1 \pmod{13}$ ).

This approach may be fine for small examples when working by hand, but is not practical for serious congruences. On the other hand, the Euclidean algorithm, reviewed below, can compute modular inverses extremely efficiently.

**Glancing.** In this special case, we can actually see the solution if we notice that  $4 \cdot 3 \equiv 12$ , so that  $4 \cdot 3 \equiv -1 \pmod{13}$  and therefore  $4^{-1} \equiv -3 \pmod{13}$ . [Or, equivalently,  $-4^{-1} \equiv 10 \pmod{13}$ .]

**Solution.** Since gcd(4, 13) = 1, Bézout's identity promises that 4r + 13s = 1 for some integers r, s. Reducing 4r + 13s = 1 modulo 13, we find  $4r \equiv 1 \pmod{13}$ , so that  $4^{-1} \equiv r \pmod{13}$ .

Using the Euclidean algorithm, we find, for instance, r = 10 and s = -3. Hence,  $4^{-1} \equiv 10 \pmod{13}$ .

**Example 48.** Determine  $16^{-1} \pmod{25}$ .

Solution. Using the Euclidean algorithm, in Example 14, we found that  $11 \cdot 16 - 7 \cdot 25 = 1$ . Reducing that modulo 25, we get  $11 \cdot 16 \equiv 1 \pmod{25}$ . Hence,  $16^{-1} \equiv 11 \pmod{25}$ .

Let  $a, b \in \mathbb{Z}$ , not both zero. Recall that the diophantine equation ax + by = c has a solution if and only if c is a multiple of gcd(a, b). In particular, ax + by = 1 has a solution if and only if gcd(a, b) = 1.

**Lemma 49.** *a* is invertible modulo *n* if and only if gcd(a, n) = 1.

**Proof.** The congruence  $ax \equiv 1 \pmod{n}$  is equivalent to ax + ny = 1 where y is some integer. Note that ax + mn = 1 is a diophantine equation (we are looking for integer solutions x, y) and that it has a solution if and only if gcd(a, n) = 1.

**Corollary 50.** Let p be a prime. Then all nonzero residues are invertible modulo p.

Advanced comment. It is common to write  $\mathbb{Z}/n\mathbb{Z}$  for the set of all residues modulo n. The fact that we can add an multiply as usual, makes  $\mathbb{Z}/n\mathbb{Z}$  into a (finite) ring.

Let p be a prime. The fact that, in addition, all nonzero residues are invertible makes  $\mathbb{Z}/p\mathbb{Z}$  into a (finite) field. The fields we are familiar with, such as  $\mathbb{Q}$  (rationals),  $\mathbb{R}$  (reals),  $\mathbb{C}$  (complex numbers) are all infinite.

**Example 51.** List all invertible residues modulo 10.

#### **Solution.** 1, 3, 7, 9

(We start with all residues 0, 1, 2, ..., 9 and only keep those which have no common divisor with 10.)

#### 4.2 Linear congruences

Let us consider the linear congruence  $ax \equiv b \pmod{n}$ , where we are looking for solutions x.

We will regard solutions  $x_1, x_2$  as the same if  $x_1 \equiv x_2 \pmod{n}$ .

## **Example 52.** Solve $4x \equiv 5 \pmod{13}$ .

Solution. From an earlier problem, we know that  $4^{-1} \equiv -3 \pmod{13}$ . Hence,  $x \equiv 4^{-1} \cdot 5 \equiv -3 \cdot 5 = -2 \pmod{13}$ .

# Example 53.

- (a)  $3x \equiv 2 \pmod{7}$  has the solution x = 3. We regard x = 10 or x = 17 as the same solution. We therefore write that  $x \equiv 3 \pmod{7}$  is the unique solution to the equation.
- (b)  $3x \equiv 2 \pmod{9}$  has no solutions x.

Why? Reducing 3x = 2 + 9m modulo 3, we get  $0 \equiv 2 \pmod{3}$  which is a contradiction. Just to make sure! Why does the same argument not apply to  $3x \equiv 2 \pmod{7}$ ?

(c)  $6x \equiv 3 \pmod{9}$  has solutions x = 2, x = 5, x = 8.  $6x \equiv 3 + 9m$  is equivalent to  $2x \equiv 1 + 3m$  or  $2x \equiv 1 \pmod{3}$ . Which has solution  $x \equiv 2 \pmod{3}$ .

**Theorem 54.** Consider the linear congruence  $ax \equiv b \pmod{n}$ . Let  $d = \gcd(a, n)$ .

- (a) The linear congruence has a solution if and only if d|b.
- (b) If d = 1, then there is a unique solution modulo n.
- (c) If d|b, then it has d different solutions modulo n. (In fact, it has a unique solution modulo n/d.)

#### Proof.

- (a) Finding x such that  $ax \equiv b \pmod{n}$  is equivalent to finding x, y such that ax + ny = b. The latter is a diophantine equation of the kind we studied earlier. In particular, we know that it has a solution if and only if gcd(a, n) divides b.
- (b) If d = 1, then a is invertible modulo n. Multiplying the congruence ax ≡ b (mod n) with a<sup>-1</sup>, we obtain x ≡ a<sup>-1b</sup> (mod n). That's the unique solution.
  Alternatively. If d=1, then ax + ny = b has general solution x = x<sub>0</sub> + tn, y = y<sub>0</sub> ta (where x<sub>0</sub>, y<sub>0</sub> is some particular solution). But, modulo n, all of these lead to the same solution x ≡ x<sub>0</sub> (mod n).
- (c) If d|b, then  $ax \equiv b \pmod{n}$  is equivalent to  $a_1x \equiv b_1 \pmod{n_1}$  with  $a_1 = \frac{a}{d}$ ,  $b_1 = \frac{b}{d}$ ,  $n_1 = \frac{n}{d}$ . (Make sure you see why! Spell out the congruences as equalities.) Since  $gcd(a_1, n_1) = 1$ , we get a unique solution x modulo  $n_1$ .

Being congruent to x modulo  $n_1$  is the same as being congruent to one of  $x, x + n_1, ..., x + (d-1)n_1$  modulo n.