
Sketch of Lecture 6 Tue, 9/11/2018

4.1 Congruences: modular inverses

Review. Last time, we saw that ac� bc (modn) does not always imply a� b (modn).
For instance, 2 � 4� 2 � 1 (mod 6) but 4�/ 1 (mod 6).
The reason is that 2 is not invertible modulo 6.
The issue is that 2j6 which results in 2 � 3� 0 (mod6).

Let us brie�y discuss residues that are invertible modulo n.

Example 46. Note that 3 � 7� 1 (mod10). Hence, we write 3¡1� 7 (mod10) and say that 7
is the modular inverse of 3 modulo 10.
Comment. As expected, we have (x¡1)¡1�x (modn). Here, (3¡1)¡1� 7¡1� 3 (mod10).

Example 47. Determine 4¡1 (mod 13).
Brute force solution. We need to �nd a residue x such that 4x� 1 (mod13). We can try the values 0; 1;
2; 3; :::;12 and �nd that x= 10 is the only solution modulo 13 (because 4 � 10� 1 (mod13)).
This approach may be �ne for small examples when working by hand, but is not practical for serious congru-
ences. On the other hand, the Euclidean algorithm, reviewed below, can compute modular inverses extremely
e�ciently.
Glancing. In this special case, we can actually see the solution if we notice that 4 � 3 = 12, so that
4 � 3�¡1 (mod13) and therefore 4¡1�¡3 (mod13). [Or, equivalently, ¡4¡1� 10 (mod13).]

Solution. Since gcd(4;13)=1, Bézout's identity promises that 4r+13s=1 for some integers r; s. Reducing
4r+ 13s=1 modulo 13, we �nd 4r� 1 (mod13), so that 4¡1� r (mod13).
Using the Euclidean algorithm, we �nd, for instance, r= 10 and s=¡3. Hence, 4¡1� 10 (mod13).

Example 48. Determine 16¡1 (mod25).
Solution. Using the Euclidean algorithm, in Example 14, we found that 11 � 16¡ 7 � 25=1.
Reducing that modulo 25, we get 11 � 16� 1 (mod25).
Hence, 16¡1� 11 (mod25).

Let a; b2Z, not both zero. Recall that the diophantine equation ax+ by= c has a solution if
and only if c is a multiple of gcd(a; b). In particular, ax+ by=1 has a solution if and only if
gcd(a; b)= 1.

Lemma 49. a is invertible modulo n if and only if gcd(a; n)= 1.
Proof. The congruence ax� 1 (mod n) is equivalent to ax+ ny = 1 where y is some integer. Note that
ax+mn=1 is a diophantine equation (we are looking for integer solutions x; y) and that it has a solution
if and only if gcd(a; n)= 1. �

Corollary 50. Let p be a prime. Then all nonzero residues are invertible modulo p.
Advanced comment. It is common to write Z/nZ for the set of all residues modulo n. The fact that we
can add an multiply as usual, makes Z/nZ into a (�nite) ring.
Let p be a prime. The fact that, in addition, all nonzero residues are invertible makes Z/pZ into a (�nite)
�eld. The �elds we are familiar with, such as Q (rationals), R (reals), C (complex numbers) are all in�nite.

Example 51. List all invertible residues modulo 10.
Solution. 1; 3; 7; 9
(We start with all residues 0; 1; 2; :::; 9 and only keep those which have no common divisor with 10.)
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4.2 Linear congruences

Let us consider the linear congruence ax� b (modn), where we are looking for solutions x.

We will regard solutions x1; x2 as the same if x1�x2 (modn).

Example 52. Solve 4x� 5 (mod 13).
Solution. From an earlier problem, we know that 4¡1�¡3 (mod13).
Hence, x� 4¡1 � 5�¡3 � 5=¡2 (mod13).

Example 53.

(a) 3x�2 (mod7) has the solution x=3. We regard x=10 or x=17 as the same solution.
We therefore write that x� 3 (mod 7) is the unique solution to the equation.

(b) 3x� 2 (mod 9) has no solutions x.

Why? Reducing 3x=2+9m modulo 3, we get 0� 2 (mod3) which is a contradiction.
Just to make sure! Why does the same argument not apply to 3x� 2 (mod7)?

(c) 6x� 3 (mod 9) has solutions x=2, x=5, x=8.

6x=3+9m is equivalent to 2x=1+3m or 2x� 1 (mod3). Which has solution x� 2 (mod3).

Theorem 54. Consider the linear congruence ax� b (modn). Let d= gcd(a; n).

(a) The linear congruence has a solution if and only if djb.

(b) If d=1, then there is a unique solution modulo n.

(c) If djb, then it has d di�erent solutions modulo n.

(In fact, it has a unique solution modulo n/d.)

Proof.

(a) Finding x such that ax� b (modn) is equivalent to �nding x; y such that ax+ny= b.
The latter is a diophantine equation of the kind we studied earlier. In particular, we know that it has
a solution if and only if gcd(a; n) divides b.

(b) If d = 1, then a is invertible modulo n. Multiplying the congruence ax � b (mod n) with a¡1, we
obtain x� a¡1b (modn). That's the unique solution.
Alternatively. If d=1, then ax+ny= b has general solution x=x0+ tn, y= y0¡ ta (where x0; y0
is some particular solution). But, modulo n, all of these lead to the same solution x�x0 (modn).

(c) If djb, then ax� b (modn) is equivalent to a1x� b1 (modn1) with a1=
a

d
, b1=

b

d
, n1=

n

d
. (Make

sure you see why! Spell out the congruences as equalities.) Since gcd(a1; n1) = 1, we get a unique
solution x modulo n1.
Being congruent to x modulo n1 is the same as being congruent to one of x; x+n1; :::; x+(d¡ 1)n1
modulo n. �
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