Example 38. (HW) Determine all solutions of 4x + 7y = 67 with x and y positive integers.

Solution. We see that x = 2, y = -1 is a solution to 4x + 7y = 1 (you can, of course, use the Euclidean algorithm if you wish).

Hence, a particular solution to 4x + 7y = 67 is given by x = 134, y = -67.

The general solution to 4x + 7y = 67 is thus given by x = 134 + 7t, y = -67 - 4t, where t can be any integer.

- x > 0 if and only if 134 + 7t > 0 if and only if $t > -\frac{134}{7} \approx -19.14$. That is, t = -19, -18, ...
- y > 0 if and only if -67 4t > 0 if and only if $t < -\frac{67}{4} = -16.75$. That is, t = -17, -18, ...

Hence, we get a solution (x, y) with positive integers x, y for t = -19, -18, -17. The three corresponding solutions are: (1, 9), (8, 5), (15, 1).

4 Congruences

$$a \equiv b \pmod{n}$$
 means $a = b + mn$ (for some $m \in \mathbb{Z}$)

In that case, we say that "a is congruent to b modulo n".

- In other words: $a \equiv b \pmod{n}$ if and only if a b is divisible by n.
- In yet other words: $a \equiv b \pmod{n}$ if and only if a and b leave the same remainder when dividing by n.

Example 39. $17 \equiv 5 \pmod{12}$ as well as $17 \equiv 29 \equiv -7 \pmod{12}$

Example 40. We will discuss in more detail that, and how, we can calculate with congruences. Here is an appetizer: What is 2^{100} modulo 3? That is, what's the remainder upon division by 3? **Solution.** $2 \equiv -1 \pmod{3}$. Hence, $2^{100} \equiv (-1)^{100} \equiv 1 \pmod{3}$.

Example 41. Every integer x is congruent to one of 0, 1, 2, 3, 4 modulo 5.

We therefore say that 0, 1, 2, 3, 4 form a **complete set of residues** modulo 5.

Another natural complete set of residues modulo 5 is: $0, \pm 1, \pm 2$

A not so natural complete set of residues modulo 5 is: -5, 2, 4, 8, 16

A possibly natural complete set of residues modulo 5 is: $0, 3, 3^2 = 9, 3^3 = 27, 3^4 = 81$

[We will talk more about this last case. Because this worked as it did, we will say that "3 is a multiplicative generator modulo 5".]

Theorem 42. We can calculate with congruences.

• First of all, if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$. In other words, being congruent is a transitive property. Why? n|(b-a) and n|(c-b), then n|((b-a)+(c-b)).

Alternatively, we can note that each of a, b, c leaves the same remainder when dividing by n.

- If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then
 - (a) $a + c \equiv b + d \pmod{n}$ Why? $(b+d) - (a+c) \equiv (b-a) + (d-c)$ is indeed divisible by n(because $n \mid (b-a)$ and $n \mid (d-c)$).
 - (b) $ac \equiv bd \pmod{n}$ Why? bd - ac = (bd - bc) + (bc - ac) = b(d - c) + c(b - a) is indeed divisible by n(because n|(b-a) and n|(d-c)).
- In particular, if $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$ for any positive integer k.

Example 43. Show that $41|2^{20}-1$.

Solution. In other words, we need to show that $2^{20} \equiv 1 \pmod{41}$. $2^5 = 32 \equiv -9 \pmod{41}$. Hence, $2^{20} = (2^5)^4 \equiv (-9)^4 = 81^2 \equiv (-1)^2 = 1 \pmod{41}$.

Example 44. (but careful!) If $a \equiv b \pmod{n}$, then $ac \equiv bc \pmod{n}$ for any integer c. However, the converse is not true! We can have $ac \equiv bc \pmod{n}$ without $a \equiv b \pmod{n}$ (even assuming that $c \not\equiv 0$).

For instance. $2 \cdot 4 \equiv 2 \cdot 1 \pmod{6}$ but $4 \not\equiv 1 \pmod{6}$ However. $2 \cdot 4 \equiv 2 \cdot 1 \pmod{6}$ means $2 \cdot 4 \equiv 2 \cdot 1 + 6m$. Hence, $4 \equiv 1 + 3m$, or, $4 \equiv 1 \pmod{3}$. Similarly, $ab \equiv 0 \pmod{n}$ does not always imply that $a \equiv 0 \pmod{n}$ or $b \equiv 0 \pmod{n}$.

For instance. $4 \cdot 15 \equiv 0 \pmod{6}$ but $4 \not\equiv 0 \pmod{6}$ and $15 \not\equiv 0 \pmod{6}$

These issues do not occur when n is a prime, as the next results shows.

Lemma 45. Let p be a prime.

- (a) If $ab \equiv 0 \pmod{p}$, then $a \equiv 0 \pmod{p}$ or $b \equiv 0 \pmod{p}$.
- (b) Suppose $c \not\equiv 0 \pmod{p}$. If $ac \equiv bc \pmod{p}$, then $a \equiv b \pmod{p}$.

Proof.

- (a) This statement is equivalent to Lemma 31.
- (b) ac≡bc (mod p) means that p divides ac bc = (a b)c.
 Since p is a prime, it follows that p|(a b) or p|c.
 In the latter case, c≡0 (mod p), which we excluded. Hence, p|(a b). That is, a≡b (mod p). □