
Sketch of Lecture 4 Thu, 8/30/2018

Solving diophantine equations can be incredibly hard!

Example 28. You may have seen Pythagorean triples, which are solutions to the diophantine
equation x2+ y2= z2.
A few cases. Some solutions (x; y; z) are (3; 4; 5), (6; 8;10) (boring! why?!), (5; 12; 13), (8; 15; 17), :::
The general solution. (m2¡n2; 2mn;m2+n2) is a Pythagorean triple for any integers m;n.
These solutions plus scaling generate all Pythagorean triples!
For instance, m=2; n=1 produces (3; 4; 5), while m=3; n=2 produces (5; 12; 13).
Fermat's last theorem. For, n> 2, the diophantine equation xn+ yn= zn has no solutions!
Pierre de Fermat (1637) claimed in a margin of Diophantus' book Arithmetica that he had a proof (�I have
discovered a truly marvellous proof of this, which this margin is too narrow to contain.�).
It was �nally proved by Andrew Wiles in 1995 (using a connection to modular forms and elliptic curves).
This problem is often reported as the one with the largest number of unsuccessful proofs.

3 Primes

Lemma 29. (Euclid's lemma) If djab and gcd(a; d)= 1, then djb.
Proof. Since (a; d)= 1, we can �nd x; y so that ax+ dy=1.
We now see that b= abx+ bdy is divisible by d (because djab). �

De�nition 30. An integer p> 1 is a prime if its only positive divisors are 1 and p.

Lemma 31. If p is a prime and pjab, then pja or pjb.
Proof. If pja, then we are done. Otherwise, p -a. In that case, gcd(a; p)=1 because the only positive divisors
of p are 1 and p. Our claim therefore is a special case of the previous lemma. �

Corollary 32. If p is a prime and pja1a2���ar, then pjak for some k 2f1; 2; :::; rg.

Example 33. This property is unique to primes. For instance, 6j8 � 21 but 6 - 8 and 6 - 21.
Whereas, 2j8 � 21 and, indeed 2j8. Similarly, 3j8 �21 and, indeed 3j21.

Theorem 34. (Fundamental Theorem of Arithmetic) Every integer n> 1 can be written
as a product of primes. This factorization is unique (apart from the order of the factors).
Proof. Let us �rst prove, by (strong) induction, that every integer n>1 can be written as a product of primes.

� (base case) n=2 is a prime. There is nothing to do.

� (induction step) Suppose that we already know that all integers less than n can be written as a
product of primes. We need to show that n can be written as a product of primes, too.
Let d> 1 be the smallest divisor of n. Then d is necessarily a prime (because if a> 1 divides d, then
a also divides n so that a= d because d is the smallest number dividing n).
If d=n, then n is a prime, and we are already done.
Otherwise, n

d
> 1 is an integer, which, by the induction hypothesis, can be written as the product of

some primes p1���pr. Then, n= dp1���pr.

Finally, let us think about why this factorization is unique. Suppose we have two factorizations

n= p1p2���pr= q1q2���qs:

By the corollary, each pi divides one of the qj's (and vice versa), in which case pi = qj, so we can cancel
common factors until we see that both factorizations are identical. �
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Example 35. (advanced; just for fun and perspective) The following example is supposed
to illustrate that the idea of factorization into primes and the uniqueness of such factorizations
should not be taken entirely for granted.

� In more advanced number theory, it is common to extend the set of integers. For
instance, the Gaussian integers are numbers of the form a + bi, where a and b are
ordinary integers and i is the imaginary unit satisfying i2=¡1.
Note that 5 is no longer a prime because we have 5= (2+ i)(2¡ i). It turns out that
the quantities 2� i cannot be further factored. They are primes in this setting.
[These claims are usually proved by introducing the �norm� N(a + bi) = a2 + b2. This function is
multiplicative, meaning that N(xy) = N(x)N(y). It follows that 2 + i must be a prime because
N(2+ i) = 5 is a prime. For contrast, N(5)= 25 is not a prime.]
https://en.wikipedia.org/wiki/Table_of_Gaussian_integer_factorizations

� A similar kind of integers consists of numbers of the form a+ bi 5
p

, where a and b are
ordinary integers.
[This is called the ring of integers of the �eld Q( ¡5

p
).]

Then we have two di�erent factorizations of 6, namely,

6=2 � 3; 6=
¡
1+ i 5

p �¡
1¡ i 5

p �
:

The numbers 2, 3, 1� i 5
p

cannot be factored further.
[They are called irreducible. However, technically speaking, they are not primes. There is a subtle
distinction between these two concepts that is not visible when working with ordinary integers.]

Example 36. 140=22 � 5 � 7, 2016=25 � 32 � 7, 2017 is a prime, 2018=2 � 1009, 2019=3 � 673
How can we check that 2017 is indeed prime? Well, none of the small primes 2; 3; 5; 7; 11 divide 2017.
But how far do we need to check? Since 2017

p
� 44.91, we only need to check up to prime 43. (Why?!)

Example 37. The sieve of Eratosthenes is an e�cient way to �nd all primes up to some n.
Write down all numbers 2; 3; 4; :::; n. We begin with 2 as our �rst prime. We proceed by crossing out all
multiples of 2, because these are not primes. The smallest number we didn't cross out is 3, our next prime.
We again proceed by crossing out all multiples of 3, because these are not primes. The smallest number we
didn't cross out is 5 (note that it has to be prime because, by construction, it is not divisible by any prime
less than itself).

Problem. If n= 106, at which point can we stop crossing out numbers?
We can stop when our �new prime� exceeds n

p
= 1000. All remaining numbers have to be primes. Why?!
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