Sketch of Lecture 2 Thu, 8/23/2018

Lemma 10. If a=qgb+r, then ged(a,b) =ged(b, r).

Proof. Let d € N. We need to show that d|a and d|b iff d|r and d|b. [iff is short for “if and only if’]
1 ” “ Hadl . T_afqb_a qb. . .

=" (the “only if" part): d|r because  =——-—=- — - is an integer (since d|a and d|b).

“ ” [l . (L_qb+1”_qb T . . .

<" (the "if" part): d|a because - =-—— =+~ is an integer (since d|b and d|r). O

Example 11. Using this lemma to compute gcd's is refered to as the Euclidean algorithm.

(a) gcd(30,108) =ged(18,30) =ged(12,18) =ged(6,12) =ged(0,6) =6
108=3.30718 B0=1.18112 18=1.1216 12=2.670

Alternatively, taking a shortcut by allowing negative remainders:
ged(30,108) =ged(12, 30) = ged(6,12) =6
108=430-12  30=2.1246  12=2.690

(b) ged(16,25) =ged(9,16) =ged(7,9) =ged(2,7) =ged(1,2) =1
11649 16=1.947 o=1742 73241

Alternatively, again, taking a shortcut by allowing negative remainders:
ged(16,25) =ged(7,16) = ged(2,7) =ged(1,2) =1
B—216-7 16=2742 T=32+1

Theorem 12. (Bézout’s identity) Let a,b < Z (not both zero). There exist =, y € Z such that
ged(a,b) =ax + by.

Proof. We proceed iteratively:

= q1b+7r1, 0<ri<bd
b = qri+r, 0<ra<r;
ry = q3rz2+r3, 0<r3<rg

Th—3 = qn-1Tn—2+7rn_1, 0<ryp_1<7rp_2
Th—2 = qnTn—1+Tn, 0<rp<rn_1

Th—1 = Qqn+17Tn+0

Along the way, we have gcd(a, b) = ged(b, r1) = ged(r1, r2) = ... = ged(rn—2, 'n—1) = gcd(rn—1, Tn) =7Tn
(why is it obvious that the last ged is 7, 7).

By the second-to-last equation, gcd(a,b) =7, =7n_2— gnrn—1 is a linear combination of 7, _o and r,, _1.
Then, moving one up, we replace 7, _1 with 7, _3 — g 17 —2 to write gcd(a, b) as a linear combination
of rp,_3 and 7, _3. Continuing in that fashion, we ultimately obtain gcd(a, b) as a linear combination of a

and b. O

Let us revisit the previous example to illustrate how the Euclidean algorithm provides us with
a way to write ged(a, b) as an integer linear combination of a and b.
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Example 13. Find d =gcd(30,108) as well as integers r, s such that d = 38r + 108s.
Solution. We apply the extended Euclidean algorithm:
gcd(30,108)  [108|=4-[30]—-12 or: 12=—1-[108]+4-[30]
= ged(12,30) [30]=2-[12]+6 6=1-[30]—2-[12]
= ged(6,12)  [12]=2-[6]+0

=6
Backtracking through this, we find that Bézout’s identity takes the form
6 = 1:[30]-2-[12] 1-[30]—2(—1-[108]+4-[30])=2-[108]—7-[30]

In summary, we have 2-108 — 7-30=6.

Example 14. Find d =gcd(16,25) as well as integers r, s such that d =167 + 25s.
Solution. We apply the extended Euclidean algorithm:
ged(16,25)  [25]=2-[16]-7 or: 7=—1-[25]+2-[16]
=ged(7,16) [16]=2-[7]+2 2=1-[16]-2[7]
=gcd(2,7) [7]=3:[2]+1 1=[7]-3-[2]

=1
Backtracking through this, we find that Bézout’s identity takes the form

1 = [-302 = 7[A-3[08 = -7[FE+1[d

In summary, we have —7-25+4+11-16=1.

Example 15. (extra) Find d=gcd(17,23) as well as integers r, s such that d =167+ 25s.
Solution. We apply the extended Euclidean algorithm:
ged(17,23) :1-+6 or: 6:1~—1~
= ged(6,17) [17]=3-[6]—1 1=—1-[17]+3[6]

=1
Backtracking through this, we find that Bézout’s identity takes the form

= 1 [Ta (] = 3[3E]-4[T7]

In summary, we have 1=3-23—4-17.

1

2 Diophantine equations

Diophantine equations are usual equations but we are only interested in integer solutions.

Example 16. Find the general solution to the diophantine equation 162 + 25y = 0.

Solution. The non-diophantine equation 16x 4+ 25y =0 has general solution (x, y) = (25¢, —16t) where the
parameter ¢ is any real number.

We need to figure out for which ¢ this results in a solution where both coordinates z =25t and y = —16t are
integers. Obviously, ¢t needs to be a rational number. Since gcd(16,25) =1 the denominator of ¢t must be 1,
so that ¢ must be an integer. In other words, the general solution to the diophantine equation 16x 4 25y =0
is (z,y) = (25t, —16t) where the parameter t is any integer.
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Example 17. Find a solution to the diophantine equation 16x + 25y =1.

Solution. Since gcd(16, 25) = 1, Bezout's theorem guarantees a solution, which we can find using the
generalized Euclidean algorithm. Namely, in Example 14, we found that —7-25+11-16=1.

In other words, we have found the solution =11 and y = —7.
Are there other solutions? Yes! For instance, t =—14 and y=9.
What is the general solution?

Solution. In the previous example we determined that the general solution to the corresponding homoge-
neous (diophantine) equation 16x + 25y =0 is (z, y) = (25t, —16t) where the parameter ¢ is any integer.
We can add these solutions to any particular solution of 16x + 25y = 1 to obtain the general solution to
16x 4+ 25y = 1. Therefore, the general solution is

(z,y) = (11, =7) + (25t, —16t) = (11 + 25¢, —7 — 16t),

where t is any integer.

Comment. Note that choosing t =—1 results in (z,y) = (11— 25,—7+ 16) = (—14,9), another solution that
we observed earlier.

Example 18. Find the general solution to the diophantine equation 6z + 15y = 10.

Solution. This equation has no (integer) solution because the left-hand side is divisible by gcd(6,15) =3 but
the right-hand side is not divisible by 3.

Lemma 19. Let a,b € 7Z (not both zero). The diophantine equation az + by = ¢ has a solution
if and only if ¢ is a multiple of ged(a,b).

Proof.

“=" (the “only if" part): Let d=gcd(a,b). Then d divides az + by. This implies that d|c.

“<=" (the "if" part): This is a consequence of Bezout's identity. t
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