
Sketch of Lecture 2 Thu, 8/23/2018

Lemma 10. If a= qb+ r, then gcd(a; b)= gcd(b; r).

Proof. Let d2N. We need to show that dja and djb i� djr and djb. [i� is short for �if and only if�]

�=)� (the �only if� part): djr because r

d
=
a¡ qb

d
=
a

d
¡ qb

d
is an integer (since dja and djb).

�(=� (the �if� part): dja because a

d
=
qb+ r

d
=
qb

d
+

r

d
is an integer (since djb and djr). �

Example 11. Using this lemma to compute gcd's is refered to as the Euclidean algorithm.

(a) gcd(30; 108)
108=3�30+18

= gcd(18; 30)
30=1�18+12

= gcd(12; 18)
18=1�12+6

= gcd(6; 12)
12=2�6+0

= gcd(0; 6)= 6

Alternatively, taking a shortcut by allowing negative remainders:

gcd(30; 108)
108=4�30¡12

= gcd(12; 30)
30=2�12+6

= gcd(6; 12)
12=2�6+0

=6

(b) gcd(16; 25)
25=1�16+9

= gcd(9; 16)
16=1�9+7

= gcd(7; 9)
9=1�7+2

= gcd(2; 7)
7=3�2+1

= gcd(1; 2)= 1

Alternatively, again, taking a shortcut by allowing negative remainders:

gcd(16; 25)
25=2�16¡7

= gcd(7; 16)
16=2�7+2

= gcd(2; 7)
7=3�2+1

= gcd(1; 2)=1

Theorem 12. (Bézout's identity) Let a;b2Z (not both zero). There exist x; y2Z such that

gcd(a; b)= ax+ by:

Proof. We proceed iteratively:

a = q1 b+ r1; 0<r1<b

b = q2 r1+ r2; 0<r2<r1

r1 = q3 r2+ r3; 0<r3<r2
���

rn¡3 = qn¡1 rn¡2+ rn¡1; 0<rn¡1<rn¡2

rn¡2 = qn rn¡1+ rn; 0<rn<rn¡1

rn¡1 = qn+1 rn+0

Along the way, we have gcd(a; b) = gcd(b; r1) = gcd(r1; r2) = :::= gcd(rn¡2; rn¡1) = gcd(rn¡1; rn) = rn
(why is it obvious that the last gcd is rn?).
By the second-to-last equation, gcd(a; b)= rn= rn¡2¡ qnrn¡1 is a linear combination of rn¡2 and rn¡1.
Then, moving one up, we replace rn¡1 with rn¡3¡ qn¡1rn¡2 to write gcd(a; b) as a linear combination
of rn¡3 and rn¡2. Continuing in that fashion, we ultimately obtain gcd(a; b) as a linear combination of a
and b. �

Let us revisit the previous example to illustrate how the Euclidean algorithm provides us with
a way to write gcd(a; b) as an integer linear combination of a and b.
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Example 13. Find d= gcd(30; 108) as well as integers r; s such that d= 38r+ 108s.
Solution. We apply the extended Euclidean algorithm:

gcd(30; 108) 108 =4 � 30 ¡ 12 or: A 12=¡1 � 108 +4 � 30
= gcd(12;30) 30 =2 � 12 +6 B 6=1 � 30 ¡ 2 � 12
= gcd(6; 12) 12 =2 � 6 +0

= 6

Backtracking through this, we �nd that Bézout's identity takes the form

6 = 1 � 30 ¡ 2 � 12 = 1 � 30 ¡ 2
¡
¡1 � 108 +4 � 30

�
=2 � 108 ¡ 7 � 30

B A

In summary, we have 2 �108¡ 7 � 30=6.

Example 14. Find d= gcd(16; 25) as well as integers r; s such that d= 16r+ 25s.
Solution. We apply the extended Euclidean algorithm:

gcd(16; 25) 25 =2 � 16 ¡ 7 or: A 7=¡1 � 25 +2 � 16
= gcd(7; 16) 16 =2 � 7 + 2 B 2=1 � 16 ¡ 2 � 7
= gcd(2; 7) 7 =3 � 2 +1 C 1= 7 ¡ 3 � 2
= 1

Backtracking through this, we �nd that Bézout's identity takes the form

1 = 7 ¡ 3 � 2 = 7 � 7 ¡ 3 � 16 = ¡7 � 25 + 11 � 16
C B A

In summary, we have ¡7 � 25+ 11 � 16=1.

Example 15. (extra) Find d= gcd(17; 23) as well as integers r; s such that d= 16r+ 25s.
Solution. We apply the extended Euclidean algorithm:

gcd(17; 23) 23 =1 � 17 +6 or: A 6=1 � 23 ¡ 1 � 17
= gcd(6; 17) 17 =3 � 6 ¡ 1 B 1=¡1 � 17 +3 � 6
= 1

Backtracking through this, we �nd that Bézout's identity takes the form

1 = ¡1 � 17 +3 � 6 = 3 � 23 ¡ 4 � 17
B A

In summary, we have 1=3 �23¡ 4 � 17.

2 Diophantine equations

Diophantine equations are usual equations but we are only interested in integer solutions.

Example 16. Find the general solution to the diophantine equation 16x+ 25y=0.
Solution. The non-diophantine equation 16x+ 25y=0 has general solution (x; y) = (25t;¡16t) where the
parameter t is any real number.
We need to �gure out for which t this results in a solution where both coordinates x=25t and y=¡16t are
integers. Obviously, t needs to be a rational number. Since gcd(16;25)=1 the denominator of t must be 1,
so that t must be an integer. In other words, the general solution to the diophantine equation 16x+25y=0
is (x; y)= (25t;¡16t) where the parameter t is any integer.
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Example 17. Find a solution to the diophantine equation 16x+ 25y=1.
Solution. Since gcd(16; 25) = 1, Bezout's theorem guarantees a solution, which we can �nd using the
generalized Euclidean algorithm. Namely, in Example 14, we found that ¡7 �25+ 11 � 16=1.
In other words, we have found the solution x= 11 and y=¡7.

Are there other solutions? Yes! For instance, x=¡14 and y=9.

What is the general solution?
Solution. In the previous example we determined that the general solution to the corresponding homoge-
neous (diophantine) equation 16x+ 25y=0 is (x; y) = (25t;¡16t) where the parameter t is any integer.
We can add these solutions to any particular solution of 16x + 25y = 1 to obtain the general solution to
16x+ 25y=1. Therefore, the general solution is

(x; y) = (11;¡7)+ (25t;¡16t)= (11+ 25t;¡7¡ 16t);

where t is any integer.
Comment. Note that choosing t=¡1 results in (x; y)=(11¡25;¡7+16)=(¡14;9), another solution that
we observed earlier.

Example 18. Find the general solution to the diophantine equation 6x+ 15y= 10.
Solution. This equation has no (integer) solution because the left-hand side is divisible by gcd(6;15)=3 but
the right-hand side is not divisible by 3.

Lemma 19. Let a; b2Z (not both zero). The diophantine equation ax+ by= c has a solution
if and only if c is a multiple of gcd(a; b).
Proof.
�=)� (the �only if� part): Let d= gcd(a; b). Then d divides ax+ by. This implies that djc.
�(=� (the �if� part): This is a consequence of Bezout's identity. �
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