
Midterm #2: practice MATH 311 � Intro to Number Theory
midterm: Thursday, Oct 20

Please print your name:

Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating by hand.

Problem 1.

(a) Express 3141 in base 6.

(b) Determine, without the help of a calculator, the remainder of 112358132134 modulo 9.

(c) What is the remainder of 62831853 modulo 11?

(d) Is 0; 1; 2; 4; 8; :::; 211 a complete set of residues modulo 13?

(e) Is 2 a primitive root modulo 11? What about 3?

Do you see a way to determine all primitive roots modulo 11 without much further computation?

Solution.

(a) 3141= 523 � 6+ 3. Hence, 3141=(:::3)6 where ::: are the digits for 523.

523= 87 � 6+ 1. Hence, 3141=(:::13)6 where ::: are the digits for 87.

87= 14 � 6+ 3. Hence, 3141=(:::313)6 where ::: are the digits for 14.

14=2 � 6+2. Hence, 3141=(:::2313)6 where ::: are the digits for 2.

In conclusion, 3141=(22313)6.

(b) 112358132134� 1+1+2+3+5+8+1+3+2+1+3+4= 34� 7 (mod 9)

The remainder of 112358132134 modulo 9 is 7.

(c) 62831853�¡6+ 2¡ 8+ 3¡ 1+ 8¡ 5+ 3=¡4� 7 (mod11)

The remainder of 62831853 modulo 11 is 7.

(d) 20=1; 21=2; 22=4; 23=8; 24= 16� 3; 25� 2 � 3=6; 26� 2 � 6= 12�¡1

The values now repeat with a minus sign: 27 = 26 � 21 � ¡2 � 11, 28 � ¡4 � 9, 29 � ¡8 � 5, 210 � ¡3 � 10,
211�¡6� 7.

Hence, the values 0; 1; 2; 4; 8; :::; 211 are congruent, modulo 13, to 0; 1; 2; 4; 8; 3; 6; 12; 11; 9; 5; 10; 7. So, indeed,
they form a complete set of residues modulo 13.

(e) 20=1;21=2;22=4;23=8;24�5;25�2 �5=10;26�2 �10�9;27�2 �9�7;28�2 �7�3;29�2 �3=6;210�2 �6�1

Hence, 2 is a primitive root modulo 11.

On the other hand, 3� 28 is not a primitive root because 35� 240=(210)4� 1 (mod11).

If you think about this argument, you will see that 2a is a primitive root modulo 11 if and only if gcd(a;10)=1.
Hence, the primitive roots modulo 11 are 21=2, 23=8, 27� 7, 29� 6. �
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Problem 2.

(a) Using binary exponentiation, compute 3141 (mod23).

(b) Without computations, determine 3141 (mod 41).

(c) Show that 314159+ 265358+ 10 is divisible by 19.

Solution.

(a) Before we start using binary exponentiation, we should simplify 3141� 841=822 � 819� 819 (mod23).

82= 64�¡5 (mod23), 84� (¡5)2� 2, 88� 22=4, 816� 42= 16.

Hence, 3141� 819=816 � 82 � 81� 16 � (¡5) � 8
�6

� 4 (mod23).

(b) 41 is a prime. Hence, by Fermat's little theorem, a41� a (mod 41) for any integer a. So, 3141� 31 (mod41).

(c) 314159+ 265358+ 10� 10159+(¡1)358+ 10� 10159+ 11 (mod19)

Note that 19 is a prime. Therefore, for any integer a such that a�/ 0 (mod 19), we have a18 � 1 (mod 19) by
Fermat's little theorem. We can therefore use 159� 15 (mod18) to simplify

10159� 1015 (mod19):

We use binary exponentiation: 102= 100� 5 (mod19), 104� 52� 6 (mod 19), 108� 62�¡2 (mod19).

Hence, 1015= 108 � 104 � 102 � 101� (¡2) � 6
�7

� 5 � 10
�¡7

�¡49� 8 (mod19).

Combined, we �nd that 314159+ 265358+ 10� 1015+ 11� 8+ 11� 0 (mod19).

In other words, 314159+ 265358+ 10 is divisible by 19. �

Problem 3.

(a) Find the modular inverse of 17 modulo 23.

(b) Solve 15x� 7 (mod31).

(c) How many solutions does 16x� 1 (mod70) have modulo 70? Find all solutions.

(d) How many solutions does 16x� 4 (mod70) have modulo 70? Find all solutions.

Solution.

(a) We use the extended Euclidean algorithm: gcd(17; 23)
23=1�17+6

= gcd(6; 17)
17=3�6¡1

= gcd(1; 6)= 1

Hence, Bézout's identity takes the form 1= 3 � 6¡ 17
6=23¡1�17

=3 � 23¡ 4 � 17.

Hence, ¡4 � 17� 1 (mod23). In other words, 17¡1�¡4 (mod23).

(b) Since 2 � 15�¡1 (mod31), we see that 15¡1�¡2 (mod31).
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(Don't worry if you didn't see that. You can just proceed as in the �rst part of this problem.)

Hence, 15x� 7 (mod 31) has the unique solution x� 15¡1 � 7�¡2 � 7� 17 (mod 31)

(c) This congruence has no solutions, because gcd(16; 70) =2 but 2 - 1.

(d) Again gcd(16; 70)= 2, but this time 2j4. Hence, we have 2 solutions modulo 70.

The congruence is equivalent to 8x� 2 (mod35). We therefore determine 8¡1 (mod35).

We use the extended euclidean algorithm: gcd(8; 35)
35=4�8+3

= gcd(3; 8)
8=3�3¡1

= gcd(1; 3)= 1

Hence, Bézout's identity takes the form 1= 3 � 3¡ 8
3=35¡4�8

=3 � 35¡ 13 � 8.

Hence, ¡13 � 8� 1 (mod35). In other words, 8¡1�¡13 (mod35).

It follows that 8x� 2 (mod35) has the unique solution x� 8¡1 � 2�¡13 � 2� 9 (mod35).

Modulo 70, we have the two solutions x� 9 (mod70), x� 9+ 35= 44 (mod70). �

Problem 4. Solve the following system of congruences:

3x+5y � 6 (mod25)
2x+7y � 2 (mod25)

Solution. Working with rational numbers, the system

3x+5y = 6

2x+7y = 2

has solution (use any method you like)

�
x
y

�
=

�
3 5
2 7

�¡1� 6
2

�
=

1
11

�
7 ¡5
¡2 3

��
6
2

�
=

1
11

�
32
¡6

�
:

Working modulo 25, we have to determine the modular inverse 11¡1 (mod 25).

Using the Euclidian algorithm, we �nd that 11x+25y=1 is solved by x=¡9, y=4. (The steps are omitted here, since
we are experts by now. Make sure you can do it, and don't omit the steps on the exam, unless there is an obvious
choice for x and y!) This shows that 11¡1�¡9 (mod 25).

Hence, the system has the solution

�
x
y

�
� 11¡1

�
32
¡6

�
�¡9

�
7
¡6

�
�
�
12
4

�
(mod25):

(Check by substituting the values into the two original congruences!) �

Problem 5.

(a) Solve x� 1 (mod 3), x� 2 (mod 4), x� 3 (mod 5), x� 4 (mod 11).
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(b) Solve x� 1 (mod 3), x� 2 (mod 4), 2x� 3 (mod 5), 3x� 4 (mod11).

(c) Find the smallest integer a> 2 such that 2ja, 3j(a+1), 4j(a+2) and 5j(a+3).

Solution.

(a) We break the problem into four pieces:

� x� 1 (mod 3), x� 0 (mod 4), x� 0 (mod 5), x� 0 (mod11).

To satisfy the mod 4, mod 5 and mod 11 congruences, we need x=4 � 5 � 11z.

We solve 4 � 5 � 11z� 1 (mod 3). Simpli�es to z� 1 (mod 3). z=1 gives x=4 � 5 � 11= 220.

� x� 0 (mod 3), x� 1 (mod 4), x� 0 (mod 5), x� 0 (mod11). We need x=3 � 5 � 11z.

Solving 3 � 5 � 11z� 1 (mod 4). Simpli�es to z� 1 (mod 4). z=1 gives x=3 � 5 � 11= 165.

� x� 0 (mod 3), x� 0 (mod 4), x� 1 (mod 5), x� 0 (mod11). We need x=3 � 4 � 11z.

Solving 3 � 4 � 11z� 1 (mod 5). Simpli�es to 2z� 1 (mod 5), which has solution z� 3 (mod 5).

z=3 gives x=3 � 4 � 11 � 3= 396.

� x� 0 (mod 3), x� 0 (mod 4), x� 0 (mod 5), x� 1 (mod11). We need x=3 � 4 � 5z.

Solving 3 � 4 � 5z� 1 (mod11). Simpli�es to 5z� 1 (mod11), which has solution z�¡2 (mod 11).

z=¡2 gives x=3 � 4 � 5 � (¡2)=¡120.

Combining these four, x� 1 (mod 3), x� 2 (mod 4), x� 3 (mod 5), x� 4 (mod11) has solution

x=1 � 220+2 � 165+3 � 396+4 � (¡120)= 1258.

Since 3 � 4 � 5 � 11= 660, the general solution is x� 1308�¡62 (mod660) by the Chinese remainder theorem.

(b) 2x� 3 (mod 5) has the unique solution x� 2¡1 � 3� 3 � 3�¡1 (mod 5).

3x� 4 (mod11) has the unique solution x� 3¡1 � 4� 4 � 4� 5 (mod11).

Our simpli�ed task is to solve x � 1 (mod 3), x � 2 (mod 4), x � ¡1 (mod 5), x � 5 (mod 11). We reuse the
previous part to produce the solution x=1 � 220+2 � 165¡ 1 � 396+5 � (¡120)=¡446.

Therefore, the general solution is x�¡446� 214 (mod 660) by the Chinese remainder theorem.

(c) This is the same as solving a� 0 (mod 2), a�¡1 (mod 3), a�¡2 (mod 4), a� ¡3 (mod 5). Notice that we
can't apply the Chinese remainder theorem directly, because 2 and 4 are not coprime.

However, if a�¡2 (mod 4) then, automatically, a�0 (mod2). So, we can drop the latter congruence and only
look for solutions of a�¡1 (mod 3), a�¡2 (mod 4), a�¡3 (mod 5).

By the Chinese remainder theorem (since 3; 4; 5 are pairwise coprime), there is a unique solution a modulo
3 � 4 � 5= 60. Note that a=2 is such a solution. Hence, the next smallest solution is a= 62.

[No problem if you didn't see that a = 2 is a solution. You can �nd it by going through the same kind of
computations as in the previous parts.] �

� There is two more problems on the second page::: �

Armin Straub
straub@southalabama.edu

4



Problem 6. Spell out a precise version of the following famous results:

(a) Bézout's identity

(b) Fermat's little theorem

(c) Chinese remainder theorem

Solution.

(a) Bézout's identity:

Let a; b2Z (not both zero). There exist x; y 2Z such that

gcd(a; b)= ax+ by:

(b) Fermat's little theorem:

Let p be a prime, and suppose that p - a. Then

ap¡1� 1 (mod p):

(c) Chinese remainder theorem:

Let n1; n2; :::; nr be positive integers with gcd(ni; nj)= 1 for i=/ j. Then the system of congruences

x� a1 (modn1); :::; x� an (modnr)

has a simultaneous solution, which is unique modulo n=n1���nr. �

Problem 7.

(a) Let a; n be positive integers. Show that a has a modular inverse modulo n if and only if gcd(a; n)= 1.

(b) Let p be a prime, and a an integer such that p - a. Show that the modular inverse a¡1 exists, and that

a¡1� ap¡2 (mod p):

(c) Compute the modular inverse of 17 modulo 101 in two di�erent ways:

� Using the previous part of this problem, and binary exponentiation.

� Using Bézout's identity.

Solution.

(a) Recall that x is a modular inverse of a if and only if ax� 1 (modn). This congruence has a solution x if and
only if the diophantine equation

ax+ny=1

has a solution x; y 2Z. This is the case if and only if gcd(a; n) divides the right-hand side, which is 1. That is
the case if and only if gcd(a; n)= 1.

(b) Since p is a prime, and a an integer such that p - a, Fermat's little theorem states that

ap¡1� 1 (mod p):
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Equivalently, ap¡2 � a� 1 (mod p), which means that a¡1� ap¡2 (mod p).

(c) We compute the modular inverse of 17 modulo 101 in two di�erent ways:

� By the previous part of this problem,

17¡1� 1799 (mod101):

Note that 99= 64+ 32+2+1. We compute, modulo 101,

172�¡14; 174� (¡14)2�¡6; 178� (¡6)2� 36; 1716� 362�¡17; 1732� (¡17)2�¡14;

so that 1764� (¡14)2�¡6, repeating the initial values. Hence,

17¡1� 1799= 1764 � 1732 � 172 � 171� (¡6) � (¡14) � (¡14) � 17� 6 (mod101):

� Using the Euclidian algorithm, we compute

gcd(17; 101)
101=6�17¡1

= gcd(1; 17)= 1;

so that Bézout's identity simply takes the form 1= 6 � 17¡ 101.

Hence, 6 � 17� 1 (mod101). In other words, 17¡1� 6 (mod101). �

� It is also a very good idea to review the problems from Homework 4. �
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