
Sketch of Lecture 19 Thu, 11/3/2016

5.5 Wilson's theorem

Example 118. What can you say about factors of n!+1? Is n!+1 composite in�nitely often.
Is it prime in�nitely often?
Solution.

n 1 2 3 4 5 6 7 8 9 10 11 12
n! + 1 2 3 7 52 112 7 � 103 712 61 �661 19 �71 �269 11 �329; 891 39;916; 801 132 � 2; 834; 329

� Every factor m > 2 of n! + 1 has to be bigger than n. That's because, if m 6 n, then n! + 1 �
1 (modm).
Comment. In other words, the number n! + 1 has the property that all its prime factors are bigger
than n. This observation provides us with another proof that there is in�nitely many primes (see below).

� By Wilson's theorem (which we discuss below), if p is a prime, then p divides (p ¡ 1)! + 1. Hence,
n! + 1 is composite whenever n+1 is prime (so that n= p¡ 1 for some prime p).

� It is not known whether n! + 1 is prime in�nitely often. n! + 1 is prime for n= 1; 2; 3; 11; 27; 37; 41;
73; 77; 116; :::. The largest such value known (proven in 2000) is n= 6380.
Comment. As of 2016, 6380! + 1 is the 515th largest known prime number (it has 712; 355 decimal
digits). For comparison, the largest known prime is 274207281 ¡ 1 (a Mersenne prime). It has a bit
over 22.3 million (decimal) digits.

Another proof of Euclid's theorem. In order to show that there are in�nitely many primes, it is su�cient
to observe that there doesn't exist a largest prime number. But, as noted above, the number n!+ 1 has the
property that all its prime factors are bigger than n, so that arbitrarily large primes exist.

The data in the above table suggests the following:

If p is a prime, then p divides (p¡ 1)! + 1.

Apparently, this was guessed by JohnWilson, a student of Waring who mentions this in his 1770 algebra book.
Neither of these two could prove it at the time (and were pessimistic about it); Lagrange proved it in 1771.
The �rst few cases. As in the table above:
If p=2, then (p¡ 1)!+ 1=2 is divisible by 2.
If p=3, then (p¡ 1)!+ 1=3 is divisible by 3.
If p=5, then (p¡ 1)!+ 1= 25 is divisible by 5.
[If p=6, then (p¡ 1)!+ 1= 121 is not divisible by 6.]
If p=7, then (p¡ 1)!+ 1= 721 is divisible by 7.

Theorem 119. (Wilson) If p is a prime, then (p¡ 1)!�¡1 (mod p).
Proof. We can check the case p=2 directly (as we did in the previous example).
Note that (p¡ 1)!= 1 � 2 � ::: � (p¡ 1) modulo p is the product of all invertible values modulo p.
Each x among these, we can pair with its unique inverse x¡1 modulo p. Unless, x � x¡1 (mod p) or,
equivalently, x2� 1 (mod p). In the last homework, you showed that, because p is a prime, this equation has
only the solutions x��1 (mod p).
[Indeed: x2� 1 (mod p) () pj(x2¡ 1)= (x¡ 1)(x+1) () pj(x¡ 1) or pj(x+1) () x��1 (mod p)]
Hence, (p¡ 1)!� 1 � (¡1)=¡1 (mod p) because the contribution of any other value x is cancelled, modulo
p, by its inverse x¡1. �

For instance. Go through the proof for p=7. In that case, 2¡1� 4, 3¡1� 5.
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Corollary 120. n is a prime if and only if (n¡ 1)!�¡1 (modn).
Proof. It only remains to show that, if n is not a prime, then (n¡ 1)!�/ ¡1 (modn).
But this is obvious, if we realize that ¡1 is invertible modulo n but (n¡ 1)! is not. (Why?!) �

Review. A residue a is invertible modulo n if and only if gcd(a; n)= 1.
Comment. In fact, can you see why (n¡ 1)!� 0 (modn) if n> 4 is not a prime?
If we can write n= ab where a; b> 1 and a=/ b, then (n¡ 1)!= ::: �a � ::: � b � :::� 0 (modn). This works (for
instance, we can let a be the smallest divisor of n) unless n= p2.
If n= p2, then (p2¡1)!= ::: � p � ::: � (2p) � :::�0 (mod p2). Unless 2p> p2¡ 1, which excludes p=2 (n=4).

Example 121. Show that, for a given odd prime p, half of the values 1;2; :::; p¡1 are squares.
A residue which is a square modulo p is also called a quadratic residue.
Comment. As the only noninvertible residue, 0 plays a special role. It is always a square because 02=0.
For instance. If p=7, then 1, 2, 4 are squares modulo 7 but 3; 5; 6 are not.
That's because (�1)2=1, (�2)2=4, (�3)2� 2. Hence, 1; 2; 4 are the only quadratic residues modulo 7.

Solution. This is best seen if, instead of 1; 2; :::; p¡ 1, we look at the residues �1;�2; :::;�(p¡ 1)/2. It is
then clear that each residue a and its negative ¡a square to the same result. Therefore, there are at most
(p¡ 1)/2 many di�erent squares.
So far, we haven't used that p is a prime. This is important for the next step: namely, to show that there are
exactly (p¡ 1)/2 many squares. This requires us to show that each square a2 only comes from the residues
�a. In other words, we need to show that x2� a2 (mod p) only has the solutions x= a and x=¡a.
Indeed, x2�a2 (mod p)() pj(x2¡a2)=(x¡a)(x+a)() pj(x¡a) or pj(x+a)() x��a (mod p).
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