Sketch of Lecture 19 Thu, 11/3/2016

5.5 Wilson's theorem

Example 118. What can you say about factors of n!+ 17 Is n! + 1 composite infinitely often.
Is it prime infinitely often?
Solution.

n 1[2[3]74 [5 |6 7 |8 9 10 11 12
nl+1[2[3[7]|5%]112]7-103|712[61-661[19-71-269]|11 329,891 39,916,801 | 132-2, 834, 329

e Every factor m > 2 of n! 4+ 1 has to be bigger than n. That's because, if m < n, then n! + 1 =
1 (modm).
Comment. In other words, the number n! + 1 has the property that all its prime factors are bigger
than n. This observation provides us with another proof that there is infinitely many primes (see below).

e By Wilson's theorem (which we discuss below), if p is a prime, then p divides (p — 1)! + 1. Hence,
n!+ 1 is composite whenever n + 1 is prime (so that n=p — 1 for some prime p).

e It is not known whether n! + 1 is prime infinitely often. n!+ 1 is prime for n =1, 2, 3, 11, 27, 37, 41,
73,777,116, .... The largest such value known (proven in 2000) is n = 6380.
Comment. As of 2016, 6380! + 1 is the 515th largest known prime number (it has 712, 355 decimal
digits). For comparison, the largest known prime is 274207281 _ 1 (a Mersenne prime). It has a bit
over 22.3 million (decimal) digits.

Another proof of Euclid’s theorem. In order to show that there are infinitely many primes, it is sufficient
to observe that there doesn’t exist a largest prime number. But, as noted above, the number n! 4 1 has the
property that all its prime factors are bigger than n, so that arbitrarily large primes exist.

The data in the above table suggests the following:

| If pis a prime, then p divides (p — 1)! + 1.

Apparently, this was guessed by John Wilson, a student of Waring who mentions this in his 1770 algebra book.
Neither of these two could prove it at the time (and were pessimistic about it); Lagrange proved it in 1771.

The first few cases. As in the table above:

If p=2, then (p—1)!+1=2 is divisible by 2.

If p=3, then (p—1)!+1=3 is divisible by 3.

If p=5, then (p—1)!+1=25is divisible by 5.

[If p=6, then (p —1)!+1=121 is not divisible by 6.]
If p=7, then (p—1)!+1="721 is divisible by 7.

Theorem 119. (Wilson) If pis a prime, then (p —1)!=—1 (mod p).

Proof. We can check the case p=2 directly (as we did in the previous example).
Note that (p —1)!=1-2-...-(p—1) modulo p is the product of all invertible values modulo p.

Each x among these, we can pair with its unique inverse 2! modulo p. Unless, z = 2~ ! (mod p) or,

equivalently, z2=1 (mod p). In the last homework, you showed that, because p is a prime, this equation has
only the solutions z = +1 (mod p).

[Indeed: z2=1 (mod p) <= p|(z?—1)=(z—1)(x+1) < p|(z — 1) or p|(x +1) <= =41 (mod p)]
Hence, (p—1)!=1-(—1)=—1 (mod p) because the contribution of any other value z is cancelled, modulo
p, by its inverse z L. O

For instance. Go through the proof for p=7. In that case, 271 =4, 371 =5.
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Corollary 120. n is a prime if and only if (n —1)!=—1 (modn).
Proof. It only remains to show that, if n is not a prime, then (n —1)! £ —1 (modn).
But this is obvious, if we realize that —1 is invertible modulo n but (n — 1)! is not. (Why?!) O

Review. A residue a is invertible modulo n if and only if gcd(a,n) =1.

Comment. In fact, can you see why (n —1)! =0 (modn) if n >4 is not a prime?

If we can write n=ab where a,b>1 and a#b, then (n —1)!=...-a-...-b-...=0 (modn). This works (for
instance, we can let a be the smallest divisor of n) unless n :p2.
If n=p? then (p>—1)!=...-p-...-(2p)-... =0 (mod p?). Unless 2p > p? — 1, which excludes p=2 (n=4).

Example 121. Show that, for a given odd prime p, half of the values 1,2,..., p—1 are squares.

A residue which is a square modulo p is also called a quadratic residue.

Comment. As the only noninvertible residue, 0 plays a special role. It is always a square because 02 =0.
For instance. If p=7, then 1, 2, 4 are squares modulo 7 but 3,5,6 are not.

That's because (+1)2 =1, (+2)2=4, (£3)?=2. Hence, 1,2,4 are the only quadratic residues modulo 7.

Solution. This is best seen if, instead of 1,2,...,p — 1, we look at the residues +1,+2,...,+£(p—1)/2. Itis
then clear that each residue a and its negative —a square to the same result. Therefore, there are at most
(p —1)/2 many different squares.

So far, we haven't used that p is a prime. This is important for the next step: namely, to show that there are
exactly (p —1)/2 many squares. This requires us to show that each square a? only comes from the residues
+a. In other words, we need to show that 22 =a? (mod p) only has the solutions = =a and = = —a.

Indeed, 22 =a? (mod p) <= p|(2? —a?)=(x —a)(z+a) < p|(z —a) or p|(x +a) <= z=4a (mod p).

Armin Straub 29

straub@southalabama.edu



