
Sketch of Lecture 18 Tue, 11/1/2016

Example 111. What are the last two (decimal) digits of 34242?

Solution. We need to determine 34242 (mod100). �(100)= �(2252)= 100
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= 40.

Since gcd(3;100)= 1 and 4242� 2 (mod40), Euler's theorem shows that 34242� 32=9 (mod100).

Example 112. Show that a100� a4 (mod60) for any integer a.

First attempt. Since �(60) = �(22 � 3 � 5) = 60
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= 16, Euler's theorem shows that

a16�1 (mod60) provided that gcd(a;60)=1. Since 100�4 (mod16), it follows that, for those a, we indeed
have a100� a4 (mod60).
Brute force. Not that, if everything else fails, we can always establish this congruence by checking all 60
residue classes for a modulo 60 (better: only those not yet covered by Euler's theorem).

Solution. By the Chinese remainder theorem, since 60=22 � 3 � 5, this is true if and only if

a100 � a4 (mod4)
a100 � a4 (mod3)
a100 � a4 (mod5)

for all integers a. But each of these three congruences is easy to check!
Modulo 3 and 5 this follows from Fermat's little theorem (for instance, modulo 5, we have a4� 1 (mod 5)
if 5 - a, so that both a100 and a4 are congruent to 1; if, on the other hand, 5ja then both a100 and a4 are
congruent to 0 modulo 5).
Similarly, Euler's theorem shows that a100�a4 (mod4) provided that gcd(a; 4)=1. Otherwise, that is 2ja,
or, equivalently, a� 0 (mod4) or a� 2 (mod4). In both of these cases, a100 and a4 are each congruent to
0 modulo 4.

Important comment. The lesson to learn is that, whenever we deal with congruences modulo composite
numbers, we should consider applying the Chinese remainder theorem.
Advanced comment. In general, for any positive n, we have an�an¡�(n) (modn) for all integers a. This
generalizes the congruence ap�a (mod p), where p is a prime but a can be any integer. It isn't quite strong
enough to directly solve our problem at hand.

Example 113. Fermat's little theorem can be stated in the slightly stronger form:

n is a prime if and only if an¡1� 1 (modn) for all a2f1; 2; :::; n¡ 1g.

Why? Fermat's little theorem covers the �if� part. The �only if� part is a direct consequence of the fact that,
if n is composite with divisor d, then dn¡1�/ 1 (modn). (Why?!)

Fermat primality test
Input: number n and parameter k indicating the number of tests to run
Output: �not prime� or �possibly prime�
Algorithm:

Repeat k times:
Pick a random number a from f2; 3; :::; n¡ 2g.
If an¡1�/ 1 (modn), then stop and output �not prime�.

Output �possibly prime�.
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However. Not usually used in practice because of the existence of absolute pseudoprimes, which are discussed
below: although rare, for these numbers, the Fermat primality test is essentially just a random search for
factors of n. There do exist, however, extensions of the Fermat primality test which solve these issues.
[For instance, Miller-Rabin, which checks whether an¡1 � 1 (mod n) but also checks whether values like
a(n¡1)/2 are congruent to �1.]
Advanced comment. If n is composite but not an absolute pseudoprime, then at least half of the values for
a satisfy an¡1�/ 1 (modn) and so reveal that n is not a prime.

Example 114. Suppose we want to determine whether n= 221 is a prime.
First, maybe we pick a= 38 randomly from f2; 3; :::;219g.
We then calculate that 38220� 1 (mod221). So far, 221 is behaving like a prime.
Next, we might pick a= 24 randomly from f2; 3; :::; 219g.
We then calculate that 24220� 81�/ 1 (mod221).
We therefore stop and have determined that 221 is not a prime.
Important comment. We have done so without �nding a factor of n!
Comment. Since 38 was giving us a false impression regarding the primality of n, it is called a Fermat liar.
On the other hand, we say that 221 is a pseudoprime to the base 38.
Comment. In this example, we were actually unlucky that our �rst �random� pick was a Fermat liar: only 14
of the 218 numbers (about 6.4%) are liars.

De�nition 115. Given a > 1. A composite number n such that an � a (mod n) is called a
pseudoprime to the base a.
The smallest pseudoprimes to the base 2 are 341;561;645;1105;1387;1729; :::. There are in�nitely many of
these, but they are much rarer than primes! (Only 247 of these up to 106, compared to 78;498 primes.)

Example 116. Somewhat suprisingly, there exist numbers which are pseudoprime to any base.
These are called absolute pseudoprimes or Carmichael numbers.
The �rst few are 561;1105;1729;2465; ::: (it was only shown in 1994 that there are in�nitely many of them).
These are very rare, however: there are 43 absolute pseudoprimes less than 106. (Versus 78; 498 primes.)

Example 117. (homework)

� Show that 25 is a pseudoprime to base 7.

� Show that 561=3 � 11 � 17 is an absolute pseudoprime.
Hint. Proceed using the Chinese remainder theorem, as in the second example today.
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