Sketch of Lecture 17 Thu, 10/27/2016

Theorem 103.
(a) ¢(n)=n—1if and only if n is a prime.

.
(b) If pis a prime, then gb(pk):pk—%:pk(l_%).

)
(c) ¢ is multiplicative, that is, ¢(nm)= ¢(n)@(m) whenever n, m are coprime.
)

(d) Hence, if the prime factorization of n is n.=pi*---pF then ¢(n) = n( 1— i)(l - pi>

Proof.

(a) ¢(n)=n—1 if and only if n doesn’t share a common factor with any of {1,2,...,n — 1}. That's true
for n precisely when it is a prime.

(b) If pis a prime, then n = p* is coprime to all {1,2, ..., p*} except p,2p, ..., p*.

(c) Note that a is invertible modulo nm if and only if a is invertible modulo both n and m.

The claim therefore follows from the Chinese remainder theorem which provides a bijective (i.e., 1-1
and onto) correspondence

. (modnm)r—>[ @ (modn) ]

x (modm)

Alternatively, our book contains a direct proof (page 133).
(d) Using the two previous parts, we have

¢(n) = ¢(pY")-$(p)") zplfl(l - %)mpffr(l - i) zn(l - i)m(l - i). 0
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For instance. Let's make the correspondence provided by the Chinese remainder theorem explicit for n =2,
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Example 104. Compute ¢(1000).

Solution. ¢(1000) = ¢(23 - 53) = 1000(1 - ;)(1 -

1
g) — 400.

Example 105. Compute ¢(980).
Solution. $(980) = $(22-5-72) = 980(1 - %)(1 - é)(l - ;) — 336.

Theorem 106. (Euler’s theorem) If n>1 and ged(a,n) =1, then a®™ =1 (modn).

Before, we prove Euler's theorem, let us review Fermat'’s little theorem, which is the special case of prime n.
Fermat’s little theorem. If p is prime and pf{a, then a? ~1 =1 (mod p).

Proof. (Fermat’s little theorem) The first p — 1 multiples of a,
a,2a,3a,....,(p—1)a

are all different modulo p. Clearly, none of them is divisible by p.

Consequently, these values must be congruent (in some order) to the values 1,2, ..., p — 1 modulo p. Thus,
a-2a-3a-...-(p—1)a=1-2-3-...-(p—1) (modp).
Cancelling the common factors (allowed because p is prime!), we get a”? ~' =1 (mod p). O
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Proof. (Euler’s theorem) Let m1, mao,..., mgq be the values among {1,2,...,n — 1} which are coprime to n.
Then,

ami,ams,ams,...,amqg

are all different modulo n. Clearly, none of them share a common factor with n.

Consequently, these values must be congruent (in some order) to the values m1, ma, ...,mg modulo n. Thus,
ami-amsg-amsg-...-amg=mi-msg-mg-...-mq (modn).
Cancelling the common factors (allowed because the m; are invertible modn), we get a?=1 (modn). O

Example 107. Compute 7!%° (mod 60).
Solution. $(60) = ¢(22-3-5) = 60(1 - %)(1 - %)(1 - %) = 16. Since ged(7, 60) = 1, we obtain that
716 =1 (mod 60) by Euler’s theorem. Since 100 =4 (mod 16), we have 70 =7 (mod 60).
[because 100 =4 + 16m for some m, and so 71°0 = (716)™ .74 =74 (mod 60)]

It remains to notice that 72=49= —11 and hence 7*=(—11)?=121=1 (mod 60). So, 7'9° =1 (mod 60).

Example 108. (another joke) Why do mathematicians confuse Halloween and Christmas?

Because 31 Oct = 25 Dec.
Get it? (31)s=1+43-8=25 equals (25);0=25.

5.4 Primality testing |

Recall that it is extremely difficult to factor large integers (this is the starting point for cryp-
tography). Surprisingly, it is much simpler to tell if a number is a prime or composite (without
factoring it). The following is a first hint at how this can be done.

By Fermat's little theorem, if p is a prime, then a?=a (mod p) for any integer a. On the other
hand, this congruence is usually false if p is not a prime.

Example 109. Is 35 a prime? (Of course, not.)
Solution. If 35 was a prime, then 23° =2 (mod 35). Let’s check!
21=2,22=4,24=16,28=162=11, 216 =112=16, 232 =162=11.
Hence, 23°=232.22.21 =11.4.2=18%#2 (mod 35). This implies that 35 is not a prime!

Note. We showed that 35 is not a prime without factoring it! Our method here certainly seems more
complicated than trying to find these factors, but the situation is the opposite when the numbers get large.

Also note. If 23° had worked out to be congruent to 2 modulo 35, then we wouldn’t have learned anything:
35 might be a prime, or it might not. Repeating such tests, however, we can build more and more confidence
that our number is a prime. This uncertainty is a common feature of the most efficients primality tests, which
are heuristic: they either prove that our number is not a prime or conclude that it “very likely" is a prime.

Comment. Our computation simplifies a little bit using Euler’'s theorem: ¢(35) = 35(1 — %)(1 — %) =24.

Hence, 23° =211=11.4.2=18 (mod 35). However, in order to use this, we needed to know the prime
factorization of 35, which defeats the present purpose (since that means we already know that p is not a
prime).
Example 110. (homework)

e Evaluate ¢(2016).

e Evaluate ¢(107).

e Use Euler's theorem to compute 2556 (mod 77).

e For any integer a, show that a and a*"*! have the same last (decimal) digit.

e Use Euler's theorem to show that 51|(1032"° —7) for any integer n > 0.
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