
Sketch of Lecture 17 Thu, 10/27/2016

Theorem 103.

(a) �(n)=n¡ 1 if and only if n is a prime.

(b) If p is a prime, then �(pk)= pk¡ pk

p
= pk

�
1¡ 1

p

�
.

(c) � is multiplicative, that is, �(nm)= �(n)�(m) whenever n;m are coprime.

(d) Hence, if the prime factorization of n is n= p1
k1���prkr, then �(n)=n

�
1¡ 1

p1

�
���
�
1¡ 1

pr

�
.

Proof.

(a) �(n)=n¡ 1 if and only if n doesn't share a common factor with any of f1; 2; :::; n¡ 1g. That's true
for n precisely when it is a prime.

(b) If p is a prime, then n= pk is coprime to all f1; 2; :::; pkg except p; 2p; :::; pk.

(c) Note that a is invertible modulo nm if and only if a is invertible modulo both n and m.
The claim therefore follows from the Chinese remainder theorem which provides a bijective (i.e., 1-1
and onto) correspondence

x (modnm) 7!
�
x (modn)
x (modm)

�
:

Alternatively, our book contains a direct proof (page 133).

(d) Using the two previous parts, we have
�(n)= �(p1

k1)����(prkr)= p1
k1
�
1¡ 1
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�
���prkr
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1¡ 1
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=n
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For instance. Let's make the correspondence provided by the Chinese remainder theorem explicit for n=2,
m=3: 0!
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0
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�
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1
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�
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0
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, 3!

�
1
0
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, 4!

�
0
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�
, 5!

�
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�

Example 104. Compute �(1000).

Solution. �(1000)= �(23 � 53)= 1000
�
1¡ 1

2

��
1¡ 1

5

�
= 400.

Example 105. Compute �(980).

Solution. �(980)= �(22 � 5 � 72)= 980
�
1¡ 1

2

��
1¡ 1

5

��
1¡ 1

7

�
= 336.

Theorem 106. (Euler's theorem) If n> 1 and gcd(a; n)= 1, then a�(n)� 1 (modn).
Before, we prove Euler's theorem, let us review Fermat's little theorem, which is the special case of prime n.
Fermat's little theorem. If p is prime and p - a, then ap¡1� 1 (mod p).

Proof. (Fermat's little theorem) The �rst p¡ 1 multiples of a,

a; 2a; 3a; :::; (p¡ 1)a

are all di�erent modulo p. Clearly, none of them is divisible by p.
Consequently, these values must be congruent (in some order) to the values 1; 2; :::; p¡ 1 modulo p. Thus,

a � 2a � 3a � ::: � (p¡ 1)a� 1 � 2 � 3 � ::: � (p¡ 1) (mod p):

Cancelling the common factors (allowed because p is prime!), we get ap¡1� 1 (mod p). �
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Proof. (Euler's theorem) Let m1;m2; :::;md be the values among f1; 2; :::; n¡ 1g which are coprime to n.
Then,

am1; am2; am3; :::; amd

are all di�erent modulo n. Clearly, none of them share a common factor with n.
Consequently, these values must be congruent (in some order) to the values m1;m2; :::;md modulo n. Thus,

am1 � am2 � am3 � ::: � amd�m1 �m2 �m3 � ::: �md (modn):

Cancelling the common factors (allowed because the mi are invertible modn), we get ad� 1 (modn). �

Example 107. Compute 7100 (mod60).

Solution. �(60) = �(22 � 3 � 5) = 60
�
1 ¡ 1

2

��
1 ¡ 1

3

��
1 ¡ 1

5

�
= 16. Since gcd(7; 60) = 1, we obtain that

716� 1 (mod60) by Euler's theorem. Since 100� 4 (mod16), we have 7100� 74 (mod60).

[because 100=4+ 16m for some m, and so 7100= (716)m � 74� 74 (mod 60)]

It remains to notice that 72= 49�¡11 and hence 74� (¡11)2=121� 1 (mod60). So, 7100� 1 (mod60).

Example 108. (another joke) Why do mathematicians confuse Halloween and Christmas?
Because 31 Oct = 25 Dec.
Get it? (31)8=1+3 � 8= 25 equals (25)10= 25.

5.4 Primality testing

Recall that it is extremely di�cult to factor large integers (this is the starting point for cryp-
tography). Surprisingly, it is much simpler to tell if a number is a prime or composite (without
factoring it). The following is a �rst hint at how this can be done.
By Fermat's little theorem, if p is a prime, then ap�a (mod p) for any integer a. On the other
hand, this congruence is usually false if p is not a prime.

Example 109. Is 35 a prime? (Of course, not.)
Solution. If 35 was a prime, then 235� 2 (mod35). Let's check!

21=2, 22=4, 24= 16, 28= 162� 11, 216� 112� 16, 232� 162� 11.
Hence, 235� 232 � 22 � 21� 11 � 4 � 2� 18�/ 2 (mod35). This implies that 35 is not a prime!
Note. We showed that 35 is not a prime without factoring it! Our method here certainly seems more
complicated than trying to �nd these factors, but the situation is the opposite when the numbers get large.
Also note. If 235 had worked out to be congruent to 2 modulo 35, then we wouldn't have learned anything:
35 might be a prime, or it might not. Repeating such tests, however, we can build more and more con�dence
that our number is a prime. This uncertainty is a common feature of the most e�cients primality tests, which
are heuristic: they either prove that our number is not a prime or conclude that it �very likely� is a prime.

Comment. Our computation simpli�es a little bit using Euler's theorem: �(35) = 35
�
1¡ 1

5

��
1¡ 1

7

�
= 24.

Hence, 235 � 211 � 11 � 4 � 2 � 18 (mod 35). However, in order to use this, we needed to know the prime
factorization of 35, which defeats the present purpose (since that means we already know that p is not a
prime).

Example 110. (homework)
� Evaluate �(2016).

� Evaluate �(10n).

� Use Euler's theorem to compute 2666 (mod77).

� For any integer a, show that a and a4n+1 have the same last (decimal) digit.

� Use Euler's theorem to show that 51j(1032n+9¡ 7) for any integer n> 0.
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