
Sketch of Lecture 16 Tue, 10/25/2016

Example 98. Determine the modular inverse of 17 (mod88).
Solution. (direct) We can use the extended Euclidian algorithm directly. Left as an exercise!

Solution. (Chinese remainder theorem) 88 = 8 � 11. Hence, we instead solve 17x � 1 (mod 8), 17x �
1 (mod11). Simpli�ed: x� 1 (mod8), 6x� 1 (mod11).
The inverting on that level is easy: x� 1 (mod8), x� 2 (mod11).
x� 1 (mod8), x� 0 (mod11): x= 11 � (11)¡1

mod 8

= 11 � 3= 33

x� 0 (mod8), x� 1 (mod11): x=8 � (8)¡1

mod 11

=8 � (¡4)=¡32

Combined x� 1 � 33+2 � (¡32)=¡31� 57 (mod88).

Comment. Now that we are used to it some more, we can immediately write down the solution to x �
1 (mod8), x� 2 (mod11) as x� 1 �11 � (11)¡1

mod 8

+2 � 8 � (8)¡1

mod 11

� 1 � 11 � 3+2 � 8 � (¡4)=¡31� 57 (mod88).

Comment. It is not so convincing in this small example, but the Chinese remainder theorem is important for
practical purposes when working with very large numbers.

Example 99. Determine the modular inverse of 17 (mod42).
Solution. (Chinese remainder theorem) 42=2 � 3 � 7.
Inverting modulo 2;3;7 is easy: 17¡1�1¡1�1 (mod2), 17¡1�2¡1�2 (mod3), 17¡1� 3¡1� 5 (mod7).

17¡1� 1 � 3 � 7 � (3 � 7)¡1

mod 2

+2 � 2 � 7 � (2 � 7)¡1

mod 3

+5 � 2 � 3 � (2 � 3)¡1

mod 7

� 21 � 1+28 � 2+ 30 � (¡1)= 47� 5 (mod42)

Example 100. Compute 3100 (mod60).
Solution. (direct) We could use binary exponentiation directly. Do it as an exercise! (But note that we
cannot reduce the exponent 100 using Fermat's little theorem because 60 is not a prime; however, there exists
a generalization, known as Euler's theorem, that we could use instead. This will be discussed next class.)

Solution. (Chinese remainder theorem) Notice that 60=4 � 3 � 5, where 4; 3; 5 are pairwise coprime.
By the Chinese remainder theorem, determining x� 3100 (mod60) is the same as �nding x� 3100 (mod4),
x� 3100 (mod3), x� 3100 (mod5). It is now super easy to reduce 3100 in each case:

3100� (¡1)100=1 (mod4); 3100� 0 (mod3); 3100� (34)25� 1 (mod5)

(Note that we are using Fermat's little theorem in the modulo 5 case.)
Thus, 3100� 1 � 3 � 5 � [(3 � 5)mod 4

¡1 ] + 1 � 4 � 3 � [(4 � 3)mod 5
¡1 ]� 15 � (¡1)+ 12 � 3= 21 (mod60).

De�nition 101. Euler's phi function �(n) denotes the number of integers in f1; 2; :::; ng
that are relatively prime to n.
[For n> 1, we might as well replace f1; 2; :::; ng with f1; 2; :::; n¡ 1g.]
Important comment. In other words, �(n) counts how many numbers are invertible modulo n.

Example 102. Compute �(n) for n=1; 2; :::; 8.
Solution. �(1)=1, �(2)=1, �(3)=2, �(4)= 2, �(5)= 4, �(6)=2, �(7)=6, �(8)=4.

Observation 1. �(n)=n¡ 1 if and only if n is a prime.
This is true because �(n)=n¡1 if and only if n doesn't share a common factor with any of f1;2; :::; n¡1g.
Observation 2. If p is a prime, then �(pk)= pk¡ pk¡1= pk

�
1¡ 1

p

�
.

This is true because, if p is a prime, then n= pk is coprime to all f1; 2; :::; pkg except p; 2p; :::; pk.
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