Sketch of Lecture 14 Tue, 10/11/2016

5.2 Linear congruences |

Let us consider the linear congruence az =b (modn), where we are looking for solutions x.

We will regard solutions x1, z2 as the same if 1 =xz2 (modn).

Example 87.

(a) 3z=2 (mod7) has the solution x =3. We regard = =10 or x =17 as the same solution.
We therefore write that x =3 (mod 7) is the unique solution to the equation.

(b) 3x=2 (mod9) has no solutions z.

Why? Reducing 3z =24 9m modulo 3, we get 0 =2 (mod 3) which is a contradiction.
Just to make sure! Why does the same argument not apply to 3z =2 (mod 7)?

(c) 6x=3 (mod9) has solutions z =2, x =5, z=38.
6x =34 9m is equivalent to 2z =1+ 3m or 2z =1 (mod 3). Which has solution z =2 (mod 3).
Theorem 88. Consider the linear congruence axz=b (modn). Let d=gcd(a,n).
(a) The linear congruence has a solution if and only if d|b.

(b) If d=1, then there is a unique solution modulo 7.

(c) If d

(In fact, it has a unique solution modulo n/d.)

b, then it has d different solutions modulo n.

Proof.

(a) Finding z such that az =0 (modn) is equivalent to finding =, y such that ax +ny=2b.

The latter is a diophantine equation of the kind we studied earlier. In particular, we know that it has
a solution if and only if gcd(a, n) divides b.

(b) If d=1, then az+ ny=1> has general solution x =xz¢+tn, y=yo — ta (where zq, yo is some particular
solution). But, modulo n, all of these lead to the same solution z =z (modn).

(c) If d|b, then az =b (modn) is equivalent to a1z = b1 (mod ni) with a1 ==, by = . Since

a
. . d’
ged(a1,n1) =1, we get a unique solution z modulo nj.

Being congruent to  modulo n; is the same as being congruent to one of z,x +n1,...,2+ (d—1)ny
modulo n. (]

Example 89. Solve 4z =1 (mod5).

Brute force solution. We can try the values 0, 1,2, 3,4 and find that =4 is the only solution modulo 5.
This approach is fine for small examples when working by hand, but is not practical for serious congruences.

Solution. 42 =1 (mod5) is equivalent to 4z + 5y = 1. This is a diophantine equation!
Since gcd(4,5), Bézout's identity guarantees x, y such that 4z + 5y = 1.

Indeed, 4-4+5-(—3)=1. Modulo 5, this reduces to 4-4=1 (mod5).

Hence, x =4 (mod?5).

In other words, we have found the modular inverse of 4 modulo 5! We write 4! =4 (mod5).
(It is not surprising that 4 is its own inverse, if we realize that 4=—1 (mod5).)
Note that a has a modular inverse modulo n if and only if gcd(a,n) = 1.
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Example 90. Solve 162z =4 (mod 25).

Solution.

e We first solve 16z =1 (mod 25) to find 16! (mod 25).
We use the extended euclidean algorithm: ged(16, 25) =gcd(9,16) = ged(—2,9) =ged(1,-2)=1
25=1.1640 16=29-2 9=(_4).(—2)+1
Hence, Bézout's identity takes the form 1=9+4-(-2)=—-7-944-16=—-7-254 11 16.
- e — |
—2—16—2.9 9=25-16
Reducing —7-25+ 11- 16 modulo 25, we get 11-16=1 (mod 25).
Hence, 167! =11 (mod 25).

e It follows that 16z =4 (mod 25) has the (unique) solution z =11-4=19 (mod 25).

‘ 5.3 Chinese remainder theorem

Example 91. Solve =2 (mod5), x=4 (mod7).

Brute force solution. If = is a solution, then so is = 4+ 35. So we only look for solutions modulo 35.
Since =4 (mod 7), the only candidates for solutions are 4,11, 18, ... Among these, we find = = 32.
[We can also focus on =2 (mod?5) and consider the candidates 2,7,12, ..., but that is more work.]

This brute force solution is fine for small examples like this one. It is too slow to be used for large problems.

Solution. Let us break the problem into two pieces:

e z=1 (modb), z=0 (mod?7).
By the second congruence, x =7z.
We thus solve 7z=1 (mod5) and find z=3. Hence, z =7 -3 =21 does the trick.

e 2=0 (modb), z=1 (mod7).
By the first congruence, x =5z.
We thus solve 5z=1 (mod7) and find z=3. Hence, z =53 =15 does the trick.

Combining these two, x =2 (mod5), x =4 (mod 7) has solution 2-21+4-15=102= 32 (mod 35).

[Make sure you see why we are combining the two pieces the way we do! It's a simple idea.]

Theorem 92. (Chinese Remainder Theorem) Let ny, no, ..., n, be positive integers with
ged(ng, nj;) =1 for i# j. Then the system of congruences

r=ay; (modny), .., x=a, (modn,)

has a simultaneous solution, which is unique modulo n=n1---n,.
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