
Sketch of Lecture 14 Tue, 10/11/2016

5.2 Linear congruences

Let us consider the linear congruence ax� b (modn), where we are looking for solutions x.
We will regard solutions x1; x2 as the same if x1�x2 (modn).

Example 87.

(a) 3x�2 (mod7) has the solution x=3. We regard x=10 or x=17 as the same solution.
We therefore write that x� 3 (mod 7) is the unique solution to the equation.

(b) 3x� 2 (mod 9) has no solutions x.
Why? Reducing 3x=2+9m modulo 3, we get 0� 2 (mod3) which is a contradiction.
Just to make sure! Why does the same argument not apply to 3x� 2 (mod7)?

(c) 6x� 3 (mod 9) has solutions x=2, x=5, x=8.
6x=3+9m is equivalent to 2x=1+3m or 2x� 1 (mod3). Which has solution x� 2 (mod3).

Theorem 88. Consider the linear congruence ax� b (modn). Let d= gcd(a; n).

(a) The linear congruence has a solution if and only if djb.

(b) If d=1, then there is a unique solution modulo n.

(c) If djb, then it has d di�erent solutions modulo n.
(In fact, it has a unique solution modulo n/d.)

Proof.

(a) Finding x such that ax� b (modn) is equivalent to �nding x; y such that ax+ny= b.
The latter is a diophantine equation of the kind we studied earlier. In particular, we know that it has
a solution if and only if gcd(a; n) divides b.

(b) If d=1, then ax+ny= b has general solution x=x0+ tn, y= y0¡ ta (where x0; y0 is some particular
solution). But, modulo n, all of these lead to the same solution x� x0 (modn).

(c) If djb, then ax� b (modn) is equivalent to a1x� b1 (mod n1) with a1=
a

d
, b1=

b

d
, n1=

n

d
. Since

gcd(a1; n1)= 1, we get a unique solution x modulo n1.
Being congruent to x modulo n1 is the same as being congruent to one of x; x+n1; :::; x+(d¡ 1)n1
modulo n. �

Example 89. Solve 4x� 1 (mod 5).
Brute force solution. We can try the values 0; 1; 2; 3; 4 and �nd that x=4 is the only solution modulo 5.
This approach is �ne for small examples when working by hand, but is not practical for serious congruences.

Solution. 4x� 1 (mod5) is equivalent to 4x+5y=1. This is a diophantine equation!
Since gcd(4; 5), Bézout's identity guarantees x; y such that 4x+5y=1.
Indeed, 4 � 4+ 5 � (¡3)=1. Modulo 5, this reduces to 4 � 4� 1 (mod5).
Hence, x� 4 (mod5).

In other words, we have found the modular inverse of 4 modulo 5! We write 4¡1� 4 (mod5).
(It is not surprising that 4 is its own inverse, if we realize that 4�¡1 (mod5).)
Note that a has a modular inverse modulo n if and only if gcd(a; n) = 1.
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Example 90. Solve 16x� 4 (mod 25).
Solution.

� We �rst solve 16x� 1 (mod25) to �nd 16¡1 (mod25).
We use the extended euclidean algorithm: gcd(16; 25)

25=1�16+9

=gcd(9; 16)
16=2�9¡2

= gcd(¡2; 9)
9=(¡4)�(¡2)+1

=gcd(1;¡2)=1

Hence, Bézout's identity takes the form 1=9+4 � (¡2)
¡2=16¡2�9

=¡7 � 9+4 � 16
9=25¡16

=¡7 � 25+ 11 � 16.

Reducing ¡7 � 25+ 11 � 16 modulo 25, we get 11 � 16� 1 (mod25).
Hence, 16¡1� 11 (mod25).

� It follows that 16x� 4 (mod25) has the (unique) solution x� 11 � 4� 19 (mod25).

5.3 Chinese remainder theorem

Example 91. Solve x� 2 (mod 5), x� 4 (mod 7).
Brute force solution. If x is a solution, then so is x+ 35. So we only look for solutions modulo 35.
Since x� 4 (mod7), the only candidates for solutions are 4; 11; 18; ::: Among these, we �nd x= 32.
[We can also focus on x� 2 (mod5) and consider the candidates 2; 7; 12; :::, but that is more work.]
This brute force solution is �ne for small examples like this one. It is too slow to be used for large problems.

Solution. Let us break the problem into two pieces:

� x� 1 (mod5), x� 0 (mod7).
By the second congruence, x=7z.
We thus solve 7z� 1 (mod5) and �nd z=3. Hence, x=7 � 3= 21 does the trick.

� x� 0 (mod5), x� 1 (mod7).
By the �rst congruence, x=5z.
We thus solve 5z� 1 (mod7) and �nd z=3. Hence, x=5 � 3= 15 does the trick.

Combining these two, x� 2 (mod5), x� 4 (mod7) has solution 2 � 21+4 � 15= 102� 32 (mod35).
[Make sure you see why we are combining the two pieces the way we do! It's a simple idea.]

Theorem 92. (Chinese Remainder Theorem) Let n1; n2; :::; nr be positive integers with
gcd(ni; nj)= 1 for i=/ j. Then the system of congruences

x� a1 (modn1); :::; x� an (modnr)

has a simultaneous solution, which is unique modulo n=n1���nr.
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