Example 44. (review)

- 56x + 72y = 15 has no integer solutions (because the left side is even but the right side is odd)
- 56x + 72y = 2 has no integer solutions (because 8|(56x + 72y) but 8|2)
- 56x + 72y = 8 has an integer solution (that's Bezout's identity!) and we can find using the Euclidean algorithm (gcd(56, 72) = 8)
- 56x + 72y = k has an integer solution if and only if k is a multiple of gcd(56, 72) = 8

Example 45. (problem of the "hundred fowls", appears in Chinese text books from the 6th century) If a rooster is worth five coins, a hen three coins, and three chickens together one coin, how many roosters, hens, and chickens, totaling 100, can be bought for 100 coins?

Solution. Let x be the number of roosters, y be the number of hens, z be the number of chickens.

$$\begin{aligned} x+y+z &= 100\\ 5x+3y+\frac{1}{3}z &= 100 \end{aligned}$$

Eliminating z from the equations by taking $3eq_2 - eq_1$, we get 14x + 8y = 200, or, 7x + 4y = 100.

- Since 100 is a multiple of gcd(7,4) = 1, this equation does have integer solutions.
- To find a particular solution, we first spell out Bezout's identity: 7x + 4y = 1 has x = -1, y = 2 as a solution. [Make sure that you can find the -1 and 2 using the Euclidean algorithm.]
- Hence, a particular solution to 7x + 4y = 100 is given by x = -100, y = 200.
- The homogeneous equation 7x + 4y = 0 has general solution x = 4t, y = -7t.
- Hence, the general solution to 7x + 4y = 100 is x = -100 + 4t, y = 200 7t. These are integers if and only if t is an integer (why?!).
- We can find z using one of the original equations: z = 100 x y = 3t.
- We are only interested in solutions with $x \ge 0$, $y \ge 0$, $z \ge 0$. $x \ge 0$ means $t \ge 25$. $y \ge 0$ means $t \le 28 + \frac{4}{7}$. $z \ge 0$ means $t \ge 0$.
- Hence, $t \in \{25, 26, 27, 28\}$. The four corresponding solutions (x, y, z) are (0, 25, 75), (4, 18, 78), (8, 11, 81), (12, 4, 84).

Solving diophantine equations can be incredibly hard!

Example 46. You may have seen Pythagorean triples, which are solutions to the diophantine equation $x^2 + y^2 = z^2$.

A few cases. Some solutions (x, y, z) are (3, 4, 5), (6, 8, 10) (boring! why?!), (5, 12, 13), (8, 15, 17), ...

The general solution. $(m^2 - n^2, 2mn, m^2 + n^2)$ is a Pythagorean triple for any integers m, n.

These solutions plus scaling generate all Pythagorean triples!

For instance, m = 2, n = 1 produces (3, 4, 5), while m = 3, n = 2 produces (5, 12, 13).

Fermat's last theorem. For, n > 2, the diophantine equation $x^n + y^n = z^n$ has no solutions!

Pierre de Fermat (1637) claimed in a margin of Diophantus' book *Arithmetica* that he had a proof ("I have discovered a truly marvellous proof of this, which this margin is too narrow to contain.").

It was finally proved by Andrew Wiles in 1995 (using a connection modular forms and elliptic curves).

This problem is often reported as the one with the largest number of unsuccessful proofs.