
Sketch of Lecture 5 Tue, 8/30/2016

Example 21. Gauss' summation can be written as 1+2+ :::+n=
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This inspires yet another (direct!) way of proving it:

Proof. We claim that both sides count the number of ways in which 2 things can be selected from n+1 things.
For the right-hand side this is just the de�nition. For the left-hand side, imagine the n + 1 things lined
up in some order. We could select the �rst thing and then have n choices for the second. Or, we could
select the second thing and then have n ¡ 1 choices for the third (because we now need to avoid selecting
the �rst element again). Or, select the third things and one of the n ¡ 2 ones after it. In total, there are
n+ (n¡ 1)+ (n¡ 2)+ :::+2+1 many possibilities. �
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. Can you reproduce the argument?
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Example 23. Observe the following connection with our sums and integrals from calculus:
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The connection makes sense: the integrals give areas below curves, and the sums are approximations to these
areas (rectangles of width 1).

2 Divisibility

2.1 Quotients and remainders

Theorem 24. Let a; b2Z, with b=/ 0. Then there exist unique integers q and r such that

a= qb+ r; 06 r < jbj (that is, a
b
= q+

r

b
).

q is the quotient, and r the remainder in the division of a by b.

Example 25. For a= 20, b=6, we have 20
6
=3+

2

6
. That is, q=3 and r=2.

For a= 20, b=5, we have 20
5
=4+

0

5
. That is, q=4 and r=0.

Example 26. When b=2, then r2f0; 1g, and every integer is either of the form 2q or of the
form 2q+1. We call numbers even or odd correspondingly.

Example 27. Show that the square of an integer leaves the remainder 0 or 1 upon division by 4.
That is, none of the squares 1; 4; 9; 16; 25; 36; ::: leave remainder 2 or 3 when dividing by 4!!
Proof. Every integer is of the form 2q or 2q + 1. Upon division by 4, (2q)2 = 4q2 leaves remainder 0,
(2q+1)2=4q2+4q+1 leaves remainder 1.

Example 28. Show that the square of an integer leaves the remainder 0 or 1 upon division by 3.
Proof. Every integer is of the form 3q, 3q+1 or 3q+2. Upon division by 3, (3q)2=9q2 leaves remainder
0, while both (3q+1)2=9q2+6q+1 and (3q+2)2=9q2+ 12q+4 leave remainder 1.
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