
Sketch of Lecture 4 Thu, 8/25/2016

Example 15. Let us prove that Fn< 2n for all integers n> 0.
Getting a feeling. 0< 1, 1< 2, 1< 4, 2< 8, 3< 16, 5< 32, 8< 64 (seems like the claim is �very� true)

However, the �however� remark on Fibonacci numbers from last time implies that limn!1
Fn+1

Fn
= '� 1.618.

In other words, Fn is indeed growing exponentially (but 1.618< 2)!

(In particular, say, Fn>n1000 for large enough n, so we should be careful only looking at the �rst few cases.)

Proof.

� base cases: F0=0< 20=1, F1=1< 21=2.

� induction step: suppose that Fm< 2m for all integers m2f1; 2; :::; ng. (strong induction!)
We need to show that Fn+1< 2n+1.

Fn+1=Fn+Fn¡1<
(IH) 2n+2n¡1< 2n+2n=2n+1 �

Important note. Why was it necessary to consider two base cases?

1.4 The binomial theorem

n! counts the number of ways n objects can be ordered.
The binomial coe�cient �

n
k

�
=

n!
k!(n¡ k)!

counts the number of ways in which we can select k elements from a total of n elements.

Example 16.
�
8
3

�
=

8!

3!5!
=

8 � 7 � 6
3 � 2 � 1 =8 � 7= 56

Theorem 17. (Pascal's rule) For integers n; k, such that n> 0 and k> 1,�
n+1
k

�
=
�
n
k

�
+
�

n
k¡ 1

�
:

Proof. Let us divide both sides of the claimed identity by
�

n
k¡ 1

�
=

n!

(k¡ 1)!(n¡ k+1)!
, and write everything

in terms of factorials:

(n+1)!
k!(n¡ k+1)!

(k¡ 1)!(n¡ k+1)!
n!

=
? n!
k!(n¡ k)!

(k¡ 1)!(n¡ k+1)!
n!

+ 1

(The =
?
reminds us that we are working towards proving this identity.) Cancelling terms, this is equivalent to

n+1
k

=
? n¡ k+1

k
+1:

This latter equation is obviously true. �

Example 18. This gives rise to Pascal's triangle
�
1
0

� �
1
1

�
�
2
0

� �
2
1

� �
2
2

�
�
3
0

� �
3
1

� �
3
2

� �
3
3

�
�
4
0

� �
4
1

� �
4
2

� �
4
3

� �
4
4

�
:::

 

1 1
1 2 1
1 3 3 1
1 4 6 4 1

:::

Note that each element is the sum of the two elements above it (that's what Pascal's rule is saying).
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Example 19. Let us expand (x+ y)n.

(x+ y)1 = x+ y

(x+ y)2 = x2+2xy+ y2

(x+ y)3 = x3+3x2y+3xy2+ y3

(x+ y)4 = x4+4x3y+6x2y2+4xy3+ y4

The coe�cients are exactly the numbers from Pascal's triangle!
Of course, that's just a conjecture at this point. But we will prove it below.

Theorem 20. (Binomial theorem) For any integer n> 1,

(x+ y)n=
X
k=0

n �
n
k

�
xkyn¡k:

Proof. (by induction) We prove the claim by induction on n.

� (base case) (x+ y)1=
�
1
0

�
x+

�
1
1

�
y veri�es that the claim is true for n=1.

� (induction step) Assume that (x+ y)n=
P

k=0
n �

n
k

�
xkyn¡k is true for some n.

We need to show that (x+ y)n+1=
P
k=0
n+1�n+1

k

�
xkyn+1¡k.

(x+ y)n+1 = (x+ y)(x+ y)n

(using the induction hypothesis) = (x+ y)
X
k=0

n �
n
k

�
xkyn¡k

=
X
k=0

n �
n
k

�
xk+1yn¡k

=
X
k=1

n+1�
n

k¡1

�
xkyn+1¡k

+
X
k=0

n �
n
k

�
xkyn+1¡k

= xn+1+ yn+1+
X
k=1

n h�
n

k¡ 1

�
+
�
n
k

�i
xkyn+1¡k

(Pascal's rule) = xn+1+ yn+1+
X
k=1

n �
n+1
k

�
xkyn+1¡k

=
X
k=0

n+1 �
n+1
k

�
xkyn+1¡k

That's what we had to prove! �

Proof. (combinatorial) This alternative proof assumes that we know that
�
n
k

�
counts the number of ways

in which we can select k elements from a total of n elements.
[Here is one way to see this from the de�nition

�
n
k

�
=

n!

k!(n¡ k)! . We wish to count the number of ways in

which we can select k elements from a total of n elements. There are n! ways to line up the n elements in
order. Our intention is to select the �rst k elements. However, di�erent ways to order the n elements will
result in the same selection. Namely, the order of the �rst k doesn't matter (k! such orderings), and the
order of the remaining n¡ k does not matter ((n¡ k)! such orderings).]
Note that all of the terms we get when expanding (x+ y)n= (x+ y)(x+ y)���(x+ y) will be of the form
xkyn¡k for some k2f0; 1; :::; ng. So, how often will the term xkyn¡k come up? For each factor x+ y, we
need to decide whether to choose x or y. We get xkyn¡k in the end, if we choose x in exactly k of the n
factors. There is

�
n
k

�
many such possibilities. �
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