Sketch of Lecture 4 Thu, 8/25/2016

Example 15. Let us prove that F,, < 2" for all integers n > 0.
Getting a feeling. 0< 1, 1<2,1<4, 2<8, 3<16, 5<32, 8<64 (seems like the claim is “very” true)

However, the “however” remark on Fibonacci numbers from last time implies that lim,, , F‘;“ =@~ 1.618.

In other words, F,, is indeed growing exponentially (but 1.618 < 2)!

(In particular, say, F,, > n'0% for large enough n, so we should be careful only looking at the first few cases.)

Proof.

o basecases: Fp=0<20=1, F;=1<21=2.

e induction step: suppose that F,, < 2™ for all integers m € {1,2,...,n}. (strong induction!)
We need to show that F, 1 <2711
Fn+1:Fn+Fn_l<(IH)2n+2n71<2n+2n:2n+1 O

Important note. Why was it necessary to consider two base cases?

\ 1.4 The binomial theorem

n! counts the number of ways n objects can be ordered.
The binomial coefficient
<n> _ n!
k) kl(n—k)!

counts the number of ways in which we can select & elements from a total of n elements.

Example 16. (2)2%2%28-7:56

Theorem 17. (Pascal’s rule) For integers n, k, such that n >0 and k> 1,

("F )=+ G

Proof. Let us divide both sides of the claimed identity by (k " 1) = 1),(2!7 T and write everything
in terms of factorials:

(D! (h=Dln—kt D12 nl (k= Dkt D!
Mn—k+1)! nl = ®n k) nl +

(The = reminds us that we are working towards proving this identity.) Cancelling terms, this is equivalent to

n+1?n—k+1
ko k

This latter equation is obviously true. t

+ 1.

Example 18. This gives rise to Pascal’s triangle

(o) (1) 11

(3. 121
OGO - 1331
HWOOE  rasan

Note that each element is the sum of the two elements above it (that's what Pascal’s rule is saying).
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Example 19. Let us expand (z + y)".

) Tty
)2 = 22422y +y?
r+y)d = 23+ 32%y+ 3yt + 3
) = a4+ 423y + 622%y% + 4oy + y?
The coefficients are exactly the numbers from Pascal’s triangle!

Of course, that's just a conjecture at this point. But we will prove it below.

Theorem 20. (Binomial theorem) For any integer n > 1,

(z+y)"= Zn: (Z):cky”"“

k=0
Proof. (by induction) We prove the claim by induction on n.

o (base case) (z+y)'= (é)x + (i)y verifies that the claim is true for n =1.

e (induction step) Assume that (z+y)"=3>"]_, (Z)xky”*k is true for some n.

We need to show that (z + y)" 1= Zié ("2‘ 1>xky”+1_k.
(z+y)"*t = (@+y)(z+y)"

(using the induction hypothesis) = (z+y) Z (Z)a:ky”_k
k=0

(Z)$k+lyn—k+§ (Z)mkyn-i-l—k
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_ om4l g, n+l n ) (n)} k,m+1—Fk
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k=1
, _ gntl +1 n+1) kynt+1—k
(Pascal’s rule) T4y —1—2( e )T y"
k=1
n+1
n+1 nil_
= > (" )t
k=0

That's what we had to prove! t

1

Proof. (combinatorial) This alternative proof assumes that we know that (Z) counts the number of ways
in which we can select k£ elements from a total of n elements.
n!

T kl(n k)"
which we can select k elements from a total of n elements. There are n! ways to line up the n elements in
order. Our intention is to select the first k elements. However, different ways to order the n elements will
result in the same selection. Namely, the order of the first k doesn’t matter (k! such orderings), and the
order of the remaining n — k does not matter ((n — k)! such orderings).]

[Here is one way to see this from the definition (Z) We wish to count the number of ways in

Note that all of the terms we get when expanding (z + y)" = (z + y)(z + y)---(x + y) will be of the form
xFy™—F* for some k€ {0,1,...,n}. So, how often will the term z*y™ ~* come up? For each factor z + vy, we
need to decide whether to choose z or y. We get ¥y~ in the end, if we choose z in exactly k of the n

factors. There is (Z) many such possibilities. t
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