1 Basic proof techniques

1.1 Proofs by contradiction

- $\mathbb{N} = \{1, 2, 3, ...\}$ are the natural numbers, and $\mathbb{Z} = \{0, \pm 1, \pm 2, ...\}$ the integers.
- $\mathbb{Q} = \left\{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N} \right\}$ are the rationals, and \mathbb{R} are the reals (limits of sequences of rationals).

Example 1. $\sqrt{5}$ is not rational.

Proof. Assume (for contradiction) that we can write $\sqrt{5} = \frac{n}{m}$ with $n, m \in \mathbb{N}$. By canceling common factors, we can ensure that this fraction is reduced.

Then $5m^2 = n^2$, from which we conclude that n is divisible by 5. Write n = 5k for some $k \in \mathbb{N}$. Then $5m^2 = (5k)^2$ implies that $m^2 = 5k^2$. Hence, m is also divisible by 5. This contradicts the fact that the fraction n/m is reduced. Hence, our initial assumption must have been wrong.

Variations. Does the same proof apply to, say, $\sqrt{7}$? Which step of the proof fails for $\sqrt{4}$?

Definition 2. An integer p > 1 is a **prime** if its only positive divisors are 1 and p.

Example 3. (Euclid) There are infinitely many primes.

Proof. Assume (for contradiction) there is only finitely many primes: $p_1, p_2, ..., p_n$. Consider the number $N = p_1 \cdot p_2 \cdot ... \cdot p_n + 1$. Each prime p_i divides N - 1 and so p_i does not divide N. Thus any prime dividing N is not on our list. Contradiction.

Historical note. This is not necessarily a proof by contradiction, and Euclid (300BC) himself didn't state it as such. Instead, one can think of it as a constructive machinery of producing more primes, starting from any finite collection of primes.

A variation. Can we replace $N = p_1 \cdot p_2 \cdot \ldots \cdot p_n + 1$ in the proof with $N = p_1 \cdot p_2 \cdot \ldots \cdot p_n - 1$? Yes! (If $n \ge 2$.)

Playing with numbers.

2 + 1 = 3 is prime. $2 \cdot 3 + 1 = 7$ is prime. $2 \cdot 3 \cdot 5 + 1 = 31$ is prime. $2 \cdot 3 \cdot 5 \cdot 7 + 1 = 211$ is prime. $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 + 1 = 2311$ is prime. $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 + 1 = 30031 = 59 \cdot 509$ is not prime.

Let $P_n = p_1 \cdot p_2 \cdot \ldots \cdot p_n + 1$ where p_i is the *i*th prime. If P_n is prime, it is called a primorial prime. We have just checked that P_1, P_2, P_3, P_4, P_5 are primes but that P_6 is not a prime.

The next primorial primes are $P_{11}, P_{75}, P_{171}, P_{172}$. It is not known whether there are infinitely P_n which are prime.

More shamefully, it is not known whether there are infinitely many P_n which are not prime.

See, for instance: http://mathworld.wolfram.com/PrimorialPrime.html

1.2 A famous example of a direct proof

Example 4. (Gauss) $1+2+...+n=\frac{n(n+1)}{2}$

Proof. Write s(n) = 1 + 2 + ... + n. $2s(n) = (1 + 2 + ... + n) + (n + (n - 1) + ... + 1) = (1 + n) + (2 + n - 1) + ... + (n + 1) = n \cdot (n + 1)$. Done! \Box

Anecdote. 9 year old Gauss (1777-1855) and his classmates were tasked to add the integers from 1 to 100 (and not bother their teacher while doing so). Gauss was not writing much on his slate... just the final answer: 5050.

Armin Straub straub@southalabama.edu