' : MATH 316 — Linear Algebra II
Preparlng for Mldterm‘ #1 Midterm: Friday, Fe§16, 2024

Please print your name:

Bonus challenge. Let me know about any typos you spot in the posted solutions (or lecture sketches). Any typo,
that is not yet fixed by the time you send it to me, is worth a bonus point.

Problem 1.
0 2 1
(a) Using Gram—Schmidt, obtain an orthonormal basis for W = span (1) , 3 , _11
2 0 1 1

(b) Determine the orthogonal projection of _61 onto W.

3

(c) Determine the orthogonal projection of that same vector onto W+.
2 1 ]
3 —1

2

1

]

0
(d) Determine the @ R decomposition of the matrix (1)
0

(e) Determine a basis for the orthogonal complement W=,

Solution.

(a) Let w1, w2, w3 be the vectors spanning W. We first construct an orthogonal basis g1, g2, g3 using Gram-Schmidt
(and then normalize afterwards):

0
. q1:w1={gJ
0

0 2 —1
Normalizing, we obtain the orthonormal basis { (1) }7 %{ g }, %{ 701 } for W.

0 1 4

Comment. Alternatively, we could normalize the vectors during the Gram—Schmidt process. In general, this
introduces square roots and therefore isn’t advisable when working by hand.

2
(b) The orthogonal projection of v = _61 onto W is
3
0 2 -1 1/2
v-q1 V- q2 v-q3 1 51 0 11} 0 6
+ + s=6 ~|+=| o |+ =
oo e ™ 0|7 2| T8 1 1/2
0 1 4 3
Armin Straub 1

straub@southalabama.edu



2 1/2 3/2

. C 1 6 6 | _ 0
(c) We can compute this as the error of the projection in part (b): 1 172 |=| —3/2
3 3 0

Indeed, note that the resulting vector is in W+ (because it is the error of the projection of v onto W), while
2 3/2 1/2

the error is { _61 } - { _??/2 } _{ 1?2 }, which we know is in W (after all, it’s the projection of v onto W) and
3 0 3

therefore orthogonal to W=.

Comment. In general, if v; is the orthogonal projection of v onto a space W, then v, =v — vy is the
projection of v onto W+, (If this is not clear to you, notice that vo is the error of projecting v onto W and
therefore orthogonal to W; in other words, v, is in W. On the other hand, the error of this second projection
is v —vy=v — (v — 1) =v; which is in W and, thus, orthogonal to W+.)

Consequently, any vector v can be written in a unique way as v =v; + vy with v; in W and v, in W, Here,
v1 is the projection of v onto W and v, is the projection of v onto W+.

[0 2/3 71/VT§]
10 0
02/3 —1/yI8
01/3 4/yI8

(d) From the first part, we know that Q =

0 1 o0 0 [2 el I
Hence, R=QTA=| 2/3 0 2/3 1/3 || )3 V|=l03 53
“1/VIE 0 -1/yT8 4/VIE || 0] ] 00 2/VT8

(e) Clearly, dim W+ =1, so that W+ is spanned by a single vector.

One way to determine vectors W+ is to take any vector v (not in W) and project v onto W. The error of that
projection then is in W+.
3/2
We have already done that in part (c) of this problem: consequently, the vector { 7?? /2 J is a basis for W=.
[o2 1] 0
Alternatively. We can write W =col(A) where A :{ L g 711 J
11

0
0
It then follows from the fundamental theorem of linear algebra that W+ =null(AT). That’s a lot more work!

Problem 2.

1 3

(a) Diagonalize the symmetric matrix A = [ 5 _7

] as A=PDPT. (That is, find the matrices P and D.)

(b) Let A be a symmetric 2 x 2 matrix with 2-eigenvector { 2 } and det(A) = —6. Diagonalize A as A= PDPT.

-1
Solution.
(a) The characteristic polynomial is ’ 1;>\ 7737 . ’: (1=X)(=7=X)—=9=(A+8)(A—2), and so A has eigenvalues
—8,2.
The 2-eigenspace is null([ ;1 39 ]) has basis [ ? ] Normalized: %[ ? ]
The —8-eigenspace is null([ 2 f D has basis [ *31 ] Normalized: %[ ;1 ]
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e p__1[3 -1 _[2 o _ T
Hence, if P_ﬁ[ - ] and D—[ 0 s ], then A= PDP*.
Important comment. Note that we were asked for a diagonalization of the form A= PD PT (which is possible,
by the spectral theorem, because A is symmetric). For that, the matrix P must be orthogonal (that is, a square
matrix with orthonormal columns). In particular, we must normalize its columns! (Otherwise, we only have
the usual diagonalization A= PDP~1)

(b) Since det(A)=—6 is the product of the eigenvalues, we find that the second eigenvalue is —3.

1

Since A is symmetric, the eigenspaces are orthogonal. Hence, [ 5

} is a —3-eigenvector.

.. . . . . - T . o 1 2 1 _[2
Normalizing, a diagonalization of A is A= PDP" with P _ﬁ{ - ], D —{ s ]

Important comment. Again, if we don’t normalize and choose P:[ 31 ; ]7 D :[ 2 s ]7 then we only have
a diagonalization of the form A= PDP~! (and not A= PDPT).

Problem 3.
1 -2 1
(a) Find the least squares solution to the system 1 _01 T = g
[ ) 1 2 1 1T o
b) What is the orthogonal projection of 0 onto the space W =span 1 , -1 ?
3 1 0
1 1 2

(c) Determine the least squares line for the data points (-2, 1), (—1,0), (0, 3),(2,1).

(d) Determine the projection matrix P for orthogonally projecting onto W.

4 -1
-1 9

Solving, we find that the least squares solution is & =

1 1 . 7
(b) The orthogonal projection of [ g } onto W is Az :%{ i o M 21) :%{ g }
1 1 2 - 11

Check. The error {

= WwoH

7 0 [1
11 8 | _ 1} —8 . 1
} —7{ 0 }—7[ 12 } is orthogonal to both 1

11 —4 |1

(c) We need to determine the values a,b for the least squares line y =a+ bx. The equations a 4 bx; = y; translate
into the system

1 X1 Y1 1 -2 1
1 z9 a | | Yy . 1 -1 al| |0
1 s {b]_ ys | AtIS gy [b}_ 3
1 Xa Ya 1 2 1
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We have already computed that the least squares solution to that system is [ ‘; ] :%[

V)

21 14 7 =7
| 1

21917, 4 1ag 1] 1411 8 2
oJﬁ 14 [2102}_%{ 7 8 9 11J'
2

Hence, the least squares line is y:%+%z.

[

(d) The projection matrix is P = A(ATA)_lAT:{

o

-7 2 11 29

c[1]2]3]4
yl2(5(9(17]

Problem 4. Trying to find a relation between the quantities x and y, we measure the values

(a) We expect that y can be predicted as a linear function of the form a + bx. Find the best estimate for the
coefficients. [“best” in the least squares sense]

(b) What changes if we suppose that y can be predicted as a quadratic function of the form a + bx + cx?? Set up
a linear system such that [a,b, c]T is a least squares solution.

Solution.
(a) If we had y=a+ bz exactly, then we could find a,b by solving the system

) [ 2]
3]

13 (6] |9
14 17
ITI ITI
To find the least squares estimate, we solve the normal equations ATA[ ‘Z } = ATy.
[1 1 2
s [1111]12) [4 10 r [1111] 5| [33
AA_[1234 1371030 | ™AY= 1234 9 [T 07
14 17

We solve [ 140 ég M H:{ 13037 } tofind [ §]=55] % ][ 5 ]=aosk0 |
Hence, a=—4 and b=4.9.

(b) Again, if we had y=a+ bz + cz? exactly, then we could find a, b, ¢ by solving the system

We find the best fit by instead computing a least squares solution.

Extra. Now, it becomes a bit painful by hand (ask Sage for help!). The normal equations ATA[ Z } = ATy are:

4 10 30 a 33
10 30 100 b |=| 107
30 100 354 c 375
Solving this system, we find a =2.25, b=—1.35 and ¢=1.25.
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Problem 5.
(a) Is it true that ATA is always symmetric?
(b) If the columns of A are orthogonal, what can you say about ATA?

(0) Notethat{g]_2{”{il}J{é}

2 1 1 1 1
Why is it incorrect that the orthogonal projection of { 3 } onto span{[ 1 }, { -1 }} is 2{ 1 } — { -1 }? Explain!
3 1 1

(d) For which matrices A is it true that A== AT?

Solution.
(a) Yes, ATA is always symmetric: (ATA)T = AT(AT)T = ATA
(b) In that case, ATA is a diagonal matrix, and the diagonal entries are the squared norms of the columns of A.

2 —1
For instance. If A:[ 11 } then ATA:[ 60 ]
- 03

1 1
(¢) If the vectors { 1 } [ } 0 } were orthogonal, then this would be correct. However, they are not orthogonal.
1 2

(Technically, we would only need the third vector to be orthogonal to the first two.)

—

Indeed, we can see that 2{ } { ] cannot be the correct projection because the error would be [ 0 ], which
2

[For a square matrix, A~'= A7 if and only if ATA=1I. Hence, A~! = AT if and only if A is a square matrix
with orthonormal columns. Such matrices are called orthogonal (a somewhat unfortunate terminology).]

1
1
1
is not orthogonal to span{{

=

(d) Orthogonal matrices.

Problem 6.

(a) We want to find values for the parameters a, b, ¢ such that y=a+bx + % best fits some given points (z1, y1),
(72,92),... Set up a linear system such that [a,b,c]|T is a least squares solution.

(b) We want to find values for the parameters a, b such that y = (a + bx)e® best fits some given points (x1, y1),
(72,92),... Set up a linear system such that [a,b]” is a least squares solution.

(c) We want to find values for the parameters a,b, ¢ such that z=a+bx — ¢\/y best fits some given points (z1, y1, 1),
(72, Y2, 22), ... Set up a linear system such that [a, b, c]T is a least squares solution.

Solution.

(a) The equations a + bx; + ¢/x; = y; translate into the system:

1 X1 1/%1 |V Y1 -|
a
1 ) 1/%2 b _ Y2
L w3 1/z3 (5
. . . ¢ .
A Y
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Of course, this is usually inconsistent. To find the best possible a, b, c we compute a least squares solution.

(b) The equations (a+ bz;)e® = y; translate into the system:

A
er2 gqe®? a Y2
b

e’3 x3e”3

A | | Yy
Of course, this is usually inconsistent. To find the best possible a,b we compute a least squares solution.

(¢) The equations a + bx; — ¢\/y; = z; translate into the system:

oa v, o]
11‘2 —\/% Z: z9
Loz —ys || 23

A ‘ z

Of course, this is usually inconsistent. To find the best possible a, b, c we compute a least squares solution.

Problem 7. Let W be the subspace of R* of all solutions to 1 + z2 + 23 — x4 =0.
(a) Find a basis for W.
(b) Find a basis for the orthogonal complement W=,
(c) Determine the orthogonal projection of b= (1,1,1,1)” onto W+.

(d) Determine the orthogonal projection of b= (1,1,1,1) onto W.

Solution. Note that W =null(A) for the matrix A=[1 1 1 —-1].

—81— 82+ 83
(a) A is already in RREF, so we can read off that W =null(A) consists of the vectors [ 51 }

52
-1 -1 1
Hence, a basis for W is: { (1) }[ ? }, [ 8
0 0 1

83

(b) Recall that the orthogonal complement of null(A) is row(A).

1
} . (Note how this vector is indeed orthogonal to all basis vectors of W.)

]
J

(]

(d) The easiest way is to observe that the projection of b onto W must be b — 2{ L J :5{ 1 J
3

Hence, a basis for W= is: {
-1

(c) Since v= {

(-
[

J is an orthogonal basis for W, the projection is %v :%{
1

-1
Here, we used the projection from the previous part in the same way as we did in Problem 1(c).
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Alternatively. Using the basis for W from the first part (which is not orthogonal), we can compute the
[ -1 -1 1 ] [ 1 ]
orthogonal projection in different ways. For instance, we can solve the least squares system { é ‘f 8 Jaz :[ } J
-1 -11 0 o0 1 1

1 oo Jzﬁ (Do this and compare!)

0 1 0

If @ is the least squares solution, then the orthogonal projection is {
0 0 1

Yet another alternative way is to compute an orthogonal basis for W using Gram—Schmidt and to then project
b by just computing dot products. (Do this as well and compare!)

Problem 8. Suppose that A is a 3 x 5 matrix of rank 3.
(a) For each of the four fundamental subspaces of A, state which space it is a subspace of.
(b) What are the dimensions of all four fundamental subspaces?

(¢) Which fundamental subspaces are orthogonal complements of each other?

(d) For the specific matrix A= , compute a basis for each fundamental subspace.

W N =
S N
o O =

3
1
1

= W

(e) Observe that rank(A)=3. Then, verify that all your predictions made in the first three parts do in fact hold.

Solution.
(a) col(A) and null(AT) are subspaces of R, while row(A) and null(A) are subspaces of R®.
(b) dimcol(A) =3, dimrow(A4) =3, dimnull(A) =5 —3=2, dimnull(AT) =3 -3 =0.

(c) col(A) and null(AT) are orthogonal complements of each other.

Also, row(A) and null(A) are orthogonal complements of each other.

(d) Gaussian elimination:

12134 32*2R1$R212134RSR$R[121 34]
24013 |7 00 2 5 5| TRV 00 -2 -5 =5
3601 4 00 -3 —8 -8 00 0—%—%J
feef [ 1213 4| BEERTI T 9 10 1 12001
iR 00133 Bl 100 | MR 00100

[00011 00011 00011

Hence, we can read off the bases:

col(A) has basis [ ; ],[ (1) ],[ :1)) }
3l Lol 1

(Knowing that dim col(A) = 3, so that col(A) = R?, we could have also just written down the standard basis.)

17273
HiHIH
row(A) has basis l 1 |,l 0 J, [ 0 J
CIN B O B T
4] 13] |4
—2s1— s2 -2 —1
: 1 0
null(A) consists of the vectors 0 and so has basis | o [,| o
—S82 0 —1
S2 0 1

null(A7) has dimension 0 (contains only the zero vector), and so has an empty basis (consisting of 0 vectors).

(e) The rank is the number of pivots, which is indeed 3 (also equals dim col(A) and dimrow(A)).

We predicted all the dimensions accurately.
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