Sketch of Lecture 30 Wed, 4/3/2024

Review. SVD

Example 165. Determine the SVD of A= { - }

Comment. In contrast to our previous example, rank(A) = 1. It follows that A”A has eigenvalue 0, so that 0
is a singular value of A.

Solution. ATA:[ 2 g ] has 10-eigenvector [ i } and O-eigenvector [ _11 }
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We conclude that V = ﬂ{ 11
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We cannot obtain w2 in the same way because o5 = 0. Since for every vector us, Avs = oous, we can choose
ug as we wish, as long as the columns of U are orthonormal in the end.

’UQ:%[ —1 } (but ’UQ:%[ 712 } works just as well)
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In summary, A=UXV WIthU—\/g[l 5 ],Z—{ O]V_\/ﬁ{l 1 ]
Check. Do check that, indeed, A=UXVT.
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Example 166. Determine the SVD of A=| o 1 :
1 0
Solution. ATA:[ _21 _21 } has 3—eigenvector 11 ] and 1-eigenvector { ]
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Since ATA=VSTSV7, we conclude that V——[ -1 1]and S={ 0 1|
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ug is chosen so that the matrix U is orthogonal. Hence, us —%{ -1 } (or uz= ! { 1 })
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Hence, U=| 1/v6 1/vV2 —1/3
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In summary, A=UXVT withU=| 1/6 1/v2 —1/V3 = \{)_ 1,V L[ _11 }]
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How did we find u3g? We already have the vectors w; and w2, and need a vector orthogonal to both.
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[Without the intermediate steps, can you see why the null space consists of precisely the vectors orthogonal to
both w1 and u2?]

That is, we need to find the vector spanning span{

More generally, proceeding like this, we can always fill in “missing” vectors u,; to obtain an orthonormal basis
w1, U9, ..., Uy, that we can use as the columns of U.
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