
Sketch of Lecture 16 Mon, 2/19/2024

Powers of matrices

Example 95. (warmup) Consider A=
�
¡2 0
0 3

�
.

� What are the eigenspaces?

� What are A¡1 and A100? What is An?

Solution.

�
�
1
0

�
is a ¡2-eigenvector, and

�
0
1

�
is a 3-eigenvector. In other words, the ¡2-eigenspace is span

n�
1
0

�o
and the 3-eigenspace is span

n�
0
1

�o
.

� A¡1=
�
¡1/2 0
0 1/3

�
and A100=

"
(¡2)100 0

0 3100

#
=

"
2100 0
0 3100

#
. In general, An=

�
(¡2)n 0
0 3n

�
.

Comment. Algebraically, the map v 7!Av looks very simple. However, notice that it is not so easy to say what
happens to, say, v=

�
3
4

�
geometrically. That is because two things are happening: part of the vector v is scaled

by ¡2, the other part is scaled by 3.

Example 96. If A has �-eigenvector v, then what can we say about A2?
Solution. A2 has �2-eigenvector v.
[Indeed, A2v=A(Av)=A(�v)=�Av=�2v. This is even easier in words: multiplying v with A has the effect
of scaling it by �; hence, multiplying it with A2 scales it by �2.]
Important comment. Similarly, A100 has �100-eigenvector v.

Example 97. If a matrix A can be diagonalized as A=PDP¡1, what can we say about An?
Solution. First, note that A2=(PDP¡1)(PDP¡1)=PD2P¡1: Likewise, An=PDnP¡1.
[The point being that Dn is trivial to compute because D is diagonal.]
In particular. A¡1=PD¡1P¡1

Important comment. In the previous example, we observed that, if A has �-eigenvector v, then An has �n-
eigenvector v. Note that this is also expressed in An=PDnP¡1, because the latter is a diagonalization of An.
The diagonalization shows that An and A have the same eigenvectors (since we can use the same matrix P ) and
that the eigenvalues of An are the n-th powers of the eigenvalues of A (which are the entries of the diagonal
matrix D).

(computing matrix powers) If A is a square matrix with diagonalization A=PDP¡1, then

An=PDnP¡1:

Example 98. Let A=
�
6 1
4 9

�
. Compute An.

Solution. First, we diagonalize: A=PDP¡1 with P =
�
1 ¡1
4 1

�
and D=

�
10

5

�
. (Fill in the details!)

An=PDnP¡1=
�
1 ¡1
4 1

��
10n

5n

�
1

5

�
1 1
¡4 1

�
=
1

5

�
1 ¡1
4 1

��
10n 10n

¡4 � 5n 1 � 5n
�
=
1

5

�
10n+4 � 5n 10n¡ 5n
4 � 10n¡ 4 � 5n 4 � 10n+5n

�
Check. Verify the cases n=0 (A0= I) and n=1.
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Example 99. (extra) Let A=

24 4 0 2
2 2 2
1 0 3

35. Determine An.

Solution. We first repeat our work from Example 17 to find a diagonalization of A:
By expanding by the second column, we find that the characteristic polynomial det(A¡�I) is��������������

4¡� 0 2
2 2¡� 2
1 0 3¡�

��������������=(2¡�)
�������� 4¡� 2

1 3¡�

��������=(2¡�)[(4¡�)(3¡�)¡ 2]= (2¡�)2(5¡�):

Hence, the eigenvalues are �=2 (with multiplicity 2) and �=5.

� �=5: null

0@24 ¡1 0 2
2 ¡3 2
1 0 ¡2

351A =
RREF

null

0@24 1 0 ¡2
0 1 ¡2
0 0 0

351A= span

8<:
24 2
2
1

359=;
� �=2: null

0@24 2 0 2
2 0 2
1 0 1

351A =
RREF

null

0@24 1 0 1
0 0 0
0 0 0

351A= span

8<:
24 0
1
0

35;
24 ¡10

1

359=;
We therefore have the diagonalization A=PDP¡1 with P =

24 2 0 ¡1
2 1 0
1 0 1

35, D=

24 5 0 0
0 2 0
0 0 2

35.
[Keep in mind that other choices for P and D exist.]

With some labor (do it!), we find P¡1= 1
3

24 1 0 1
¡2 3 ¡2
¡1 0 2

35.
It follows that

An = PDnP¡1

=

24 2 0 ¡1
2 1 0
1 0 1

3524 5n 0 0
0 2n 0
0 0 2n

351
3

24 1 0 1
¡2 3 ¡2
¡1 0 2

35
=

1
3

24 2 � 5n 0 ¡2n
2 � 5n 2n 0
5n 0 2n

3524 1 0 1
¡2 3 ¡2
¡1 0 2

35
=

1
3

24 2 � 5n+2n 0 2 � 5n¡ 2 � 2n
2 � 5n¡ 2 � 2n 3 � 2n 2 � 5n¡ 2 � 2n
5n¡ 2n 0 5n+2 � 2n

35:
Check. Notice that it is particularly easy to verify the cases n=0 (A0= I) and n=1.
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