Sketch of Lecture 16 Mon, 2/19/2024

Powers of matrices

Example 95. (warmup) Consider A:{ _02 g }
e What are the eigenspaces?

e What are A~ ! and A'99? What is A™?

Solution.

° { (1) ] is a —2-eigenvector, and [ ] is a 3-eigenvector. In other words, the —2-eigenspace is spanﬂ (1) ]}

0
1
and the 3-eigenspace is spanﬂ (1) ]}

—1_|—-1/2 0 100 | (=2)° 0 [ 2100 ¢ n_ [ (=2)" 0
c A _{ 0 1/3 ] and A _{ 0 3100 | o 310 | In general, A" = o an |-
Comment. Algebraically, the map v+— Av looks very simple. However, notice that it is not so easy to say what

3
4

by —2, the other part is scaled by 3.

happens to, say, v:[ ] geometrically. That is because two things are happening: part of the vector v is scaled

Example 96. If A has \-eigenvector v, then what can we say about A%?

Solution. A2 has \2-eigenvector v.

[Indeed, A%v = A(Av) = A(Av) = Av= \?v. This is even easier in words: multiplying v with A has the effect
of scaling it by \; hence, multiplying it with A? scales it by A2 ]

Important comment. Similarly, A90 has A190_eigenvector v.

Example 97. If a matrix A can be diagonalized as A= PDP~!, what can we say about A"?
Solution. First, note that A= (PDP~1)(PDP~')=PD?P~!. Likewise, A" = PD"P~ "
[The point being that D™ is trivial to compute because D is diagonal.]
In particular. A—1=PD-1p-!
Important comment. In the previous example, we observed that, if A has \-eigenvector v, then A™ has \"-
eigenvector v. Note that this is also expressed in A” = PD™ P~ because the latter is a diagonalization of A™.
The diagonalization shows that A™ and A have the same eigenvectors (since we can use the same matrix P) and

that the eigenvalues of A™ are the n-th powers of the eigenvalues of A (which are the entries of the diagonal
matrix D).

computing matrix powers) If A is a square matrix with diagonalization A= PD P!, then
(computing p ) q g

A= pPDnp—1,

Example 98. Let A:{ i é } Compute A™.

4 1

n_ ppnp-1_[1 —1] 10" 11 1]_1[1 —1 tom  1om |_ 1] 10"44-5" 10" —5"
At =PpPDmpP *{4 1 H 5"}5[—4 1]*5[4 1 H —4.57 1-5"]*5 4-10" —4-5" 4.10" 457

Check. Verify the cases n =0 (A°=1) and n = 1.

Solution. First, we diagonalize: A= PD P~ with P:[ L1 ] and D:[ 0 ] (Fill in the details!)
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40 2
Example 99. (extra) Let A=| 2 2 2 |. Determine A™.
103

Solution. We first repeat our work from Example 17 to find a diagonalization of A:
By expanding by the second column, we find that the characteristic polynomial det(A — AI) is

2
3—-A

> NN

_(2_/\)‘ 41/\

Hence, the eigenvalues are A =2 (with multiplicity 2) and A =5.

-1 0 2 RREF 10 -2 2
e A=05:null 2 -3 2 = nullf| 01 -2 =spang | 2
1 0 -2 00 O 1
2 0 2 RREF 101 0 -1
e A=2:nulll| 2 0 2 = qnulll | 000 = span 11,] O
1101 000 0 1
20 —1 500
We therefore have the diagonalization A=PDP~'with P=| 2 1 0 |,D=|0 2 0
10 1 00 2

[Keep in mind that other choices for P and D exist.]

1 0 1
With some labor (do it!), we find P71 ==| —2 3 —2
-1 0 2

W =

It follows that

A" = PD"P!
20 115" 0 0 10 1

=121 0 0 2™ 0 % -2 3 -2
10 1 0o 0 2" -1 0 2
1 2.5 0 —27 1 0 1
=3 2-5™ 2™ 0 -2 3 -2
5 0 27 -1 0 2
1 2.5™ 427 0 2-5"-2.2"
=3 2-5"—2.2" 3.2™ 2.5"—-2.2"

5™ —2n 0 5" 42.2"

Check. Notice that it is particularly easy to verify the cases n =0 (A°=1) and n=1.
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‘—(2—)0[(4—)\)(3—)\) —2]=(2-XN)2%(5—-N).
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