More on orthogonality

Example 54. (review) Find the least squares solution to Ax = b, where

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}.$$

 $\textbf{Solution. First, } A^TA = \left[\begin{array}{ccc} 4 & 0 & 1 \\ 0 & 2 & 1 \end{array} \right] \left[\begin{array}{ccc} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{array} \right] = \left[\begin{array}{ccc} 17 & 1 \\ 1 & 5 \end{array} \right] \text{ and } A^T\pmb{b} = \left[\begin{array}{ccc} 4 & 0 & 1 \\ 0 & 2 & 1 \end{array} \right] \left[\begin{array}{ccc} 2 \\ 0 \\ 11 \end{array} \right] = \left[\begin{array}{ccc} 19 \\ 11 \end{array} \right].$

Hence, the normal equations $A^T A \hat{\boldsymbol{x}} = A^T \boldsymbol{b}$ take the form $\begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix} \hat{\boldsymbol{x}} = \begin{bmatrix} 19 \\ 11 \end{bmatrix}$. Solving, we find $\hat{\boldsymbol{x}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Check. The error $A\hat{\boldsymbol{x}} - \boldsymbol{b} = \begin{bmatrix} 2 \\ 4 \\ -8 \end{bmatrix}$ is indeed orthogonal to $\operatorname{col}(A)$. Because $\begin{bmatrix} 2 \\ 4 \\ -8 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix} = 0$ and $\begin{bmatrix} 2 \\ 4 \\ -8 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} = 0$.

Orthogonal projections

The (orthogonal) projection \hat{b} of a vector b onto a subspace W is the vector in W closest to b. We can compute \hat{b} as follows:

- Write $W = \operatorname{col}(A)$ for some matrix A.
- Then $\hat{\boldsymbol{b}} = A\hat{\boldsymbol{x}}$ where $\hat{\boldsymbol{x}}$ is a least squares solution to $A\boldsymbol{x} = \boldsymbol{b}$. (i.e. $\hat{\boldsymbol{x}}$ solves $A^TA\hat{\boldsymbol{x}} = A^T\boldsymbol{b}$)

Why? Why is $A\hat{x}$ the projection of **b** onto col(A)?

Because, if \hat{x} is a least squares solution then $A\hat{x} - b$ is as small as possible (and any element in col(A) is of the form Ax for some x).

Note. This is a recipe for computing any orthogonal projection! That's because every subspace W can be written as $\operatorname{col}(A)$ for some choice of the matrix A (take, for instance, A so that its columns are a basis for W).

Assuming A^TA is invertible (which, as discussed in the lemma below, is automatically the case if the columns of A are independent), we have $\hat{x} = (A^TA)^{-1}A^Tb$ and hence:

(projection matrix) The projection $\hat{\boldsymbol{b}}$ of \boldsymbol{b} onto $\operatorname{col}(A)$ is

(assuming cols of \boldsymbol{A} are independent)

$$\hat{\boldsymbol{b}} = \underbrace{A(A^TA)^{-1}A^T\boldsymbol{b}}_{\boldsymbol{b}}.$$

The matrix $P = A(A^TA)^{-1}A^T$ is the **projection matrix** for projecting onto $\operatorname{col}(A)$.

Example 55.

- (a) What is the orthogonal projection of $\begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$ onto $W = \operatorname{span} \left\{ \begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \right\}$?
- (b) What is the matrix P for projecting onto $W = \operatorname{span} \left\{ \begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \right\}$?
- (c) **(once more)** Using P, what is the orthogonal projection of $\begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$ onto W?
- (d) Using P, what is the orthogonal projection of $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ onto W?

Solution.

- (a) In other words, what is the orthogonal projection of $\boldsymbol{b} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$ onto $\operatorname{col}(A)$ with $A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$. In Example 54, we found that the system $A\boldsymbol{x} = \boldsymbol{b}$ has the least squares solution $\boldsymbol{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. The projection $\hat{\boldsymbol{b}}$ of \boldsymbol{b} onto $\operatorname{col}(A)$ thus is $A\hat{\boldsymbol{x}} = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 1 \begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 3 \end{bmatrix}$. Check. The error $\hat{\boldsymbol{b}} \boldsymbol{b} = \begin{bmatrix} 2 \\ 4 \\ -8 \end{bmatrix}$ needs to be orthogonal to $\operatorname{col}(A)$. Indeed: $\begin{bmatrix} 2 \\ 4 \\ -8 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix} = 0$ and $\begin{bmatrix} 2 \\ 4 \\ -8 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} = 0$.
- $\begin{array}{c} \text{(b) Note that } W = \operatorname{col}(A) \text{ for } A = \left[\begin{array}{cc} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{array} \right] \text{ and that } A^T A = \left[\begin{array}{cc} 17 & 1 \\ 1 & 5 \end{array} \right]. \text{ Thus } (A^T A)^{-1} = \frac{1}{84} \left[\begin{array}{cc} 5 & -1 \\ -1 & 17 \end{array} \right]. \\ P = A(A^T A)^{-1} A^T = \frac{1}{84} \left[\begin{array}{cc} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{array} \right] \left[\begin{array}{cc} 5 & -1 \\ -1 & 17 \end{array} \right] \left[\begin{array}{cc} 4 & 0 & 1 \\ 0 & 2 & 1 \end{array} \right] = \frac{1}{21} \left[\begin{array}{cc} 20 & -2 & 4 \\ -2 & 17 & 8 \\ 4 & 8 & 5 \end{array} \right]$
- $\text{(c) The orthogonal projection of} \left[\begin{array}{c} 2 \\ 0 \\ 11 \end{array} \right] \text{ onto } W \text{ is } P \left[\begin{array}{c} 2 \\ 0 \\ 11 \end{array} \right] = \frac{1}{21} \left[\begin{array}{cccc} 20 & -2 & 4 \\ -2 & 17 & 8 \\ 4 & 8 & 5 \end{array} \right] \left[\begin{array}{c} 2 \\ 0 \\ 11 \end{array} \right] = \frac{1}{21} \left[\begin{array}{c} 84 \\ 84 \\ 63 \end{array} \right] = \left[\begin{array}{c} 4 \\ 4 \\ 3 \end{array} \right].$

Note. Of course, that agrees with what our computations in the first part. Note that computing P is more work than what we did in in the first part. However, after having computed P once, we can easily project many vectors onto W.

(d) The orthogonal projection of $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ onto W is $P\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \frac{1}{21}\begin{bmatrix} 20 & -2 & 4 \\ -2 & 17 & 8 \\ 4 & 8 & 5 \end{bmatrix}\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \frac{1}{21}\begin{bmatrix} 20 \\ -2 \\ 4 \end{bmatrix}$. Check. The error $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - \frac{1}{21}\begin{bmatrix} 20 \\ -2 \\ 4 \end{bmatrix} = \frac{1}{21}\begin{bmatrix} 1 \\ 2 \\ -4 \end{bmatrix}$ is indeed orthogonal to both $\begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$.

Example 56. (extra)

- (a) What is the matrix P for projecting onto $W = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\}$?
- (b) Using the projection matrix, project $\begin{bmatrix} 2\\3\\3 \end{bmatrix}$ onto $W = \operatorname{span} \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix} \right\}$.

Solution.

 $\text{(a) Choosing } A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \text{, the projection matrix } P \text{ is } A(A^TA)^{-1}A^T = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} \\ = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \frac{1}{8} \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 2 & -4 & 2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}.$

Comment. We can choose A in any way such that its columns are a basis for W. The final projection matrix will always be the same.

(b) The projection is $\frac{1}{2}\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix} = \frac{1}{2}\begin{bmatrix} 5 \\ 6 \\ 5 \end{bmatrix}$.

Check. The error $\begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix} - \frac{1}{2}\begin{bmatrix} 5 \\ 6 \\ 5 \end{bmatrix} = \begin{bmatrix} -1/2 \\ 0 \\ 1/2 \end{bmatrix}$ is indeed orthogonal to W.

Example 57. (extra)

- (a) What is the orthogonal projection of $\begin{bmatrix} 1\\2\\2 \end{bmatrix}$ onto $\operatorname{span}\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1 \end{bmatrix} \right\}$?
- (b) What is the orthogonal projection of $\begin{bmatrix} 1\\2\\2 \end{bmatrix}$ onto $\operatorname{span}\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$?

Solution. (final answer only) The projections are $\left(\frac{11}{6},\frac{1}{3},\frac{7}{6}\right)^T$ and $\left(\frac{3}{2},0,\frac{3}{2}\right)^T$.

Lemma 58. If the columns of a matrix A are independent, then A^TA is invertible.

Proof. Assume A^TA is not invertible, so that $A^TAx = 0$ for some $x \neq 0$. Multiply both sides with x^T to get

$$\boldsymbol{x}^T A^T A \boldsymbol{x} = (A \boldsymbol{x})^T A \boldsymbol{x} = ||A \boldsymbol{x}||^2 = 0,$$

which implies that Ax = 0. Since the columns of A are independent, this shows that x = 0. A contradiction! \Box

Example 59. If P is a projection matrix, then what is P^2 ?

For instance. For
$$P$$
 as in Example 56, $P^2 = \frac{1}{4} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}^2 = \frac{1}{2} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix} = P$.

Solution. Can you see why it is always true that $P^2 = P$?

[Recall that P projects a vector onto a space W (actually, $W = \operatorname{col}(P)$). Hence P^2 takes a vector \boldsymbol{b} , projects it onto W to get $\hat{\boldsymbol{b}}$, and then projects $\hat{\boldsymbol{b}}$ onto W again. But the projection of $\hat{\boldsymbol{b}}$ onto W is just $\hat{\boldsymbol{b}}$ (why?!), so that P^2 always has the exact same effect as P. Therefore, $P^2 = P$.]

Example 60. True or false? If P is the matrix for projecting onto W, then W = col(P).

Solution. True!

Why? The columns of P are the projections of the standard basis vectors and hence in W. On the other hand, for any vector w in W, we have Pw = w so that w is a combination of the columns of P.

[This may take several readings to digest but do read (or ask) until it makes sense!]

In particular. $rank(P) = \dim W$ (because, for any matrix, $rank(A) = \dim col(A)$)