
Sketch of Lecture 8 Fri, 1/26/2024

Least squares

Example 43. Not all linear systems have solutions.

In fact, for many applications, data needs to be fitted and there is no hope
for a perfect match.
For instance, Ax=b with 24 1 2

3 1
0 5

35x=
24 1
1
1

35
has no solution:

�
24 1
1
1

35 is not in col(A) since
24 1
1
1

35�
24 ¡31

1

35=/ 0 (see previous example).

� Instead of giving up, we want the xwhich makesAx and b as close as possible.

� Such x is characterized by the error Ax¡b being orthogonal to col(A)
(i.e. all possible Ax).

Ax

b

Definition 44. x̂ is a least squares solution of the system Ax= b if x̂ is such that Ax̂¡ b is
as small as possible (i.e. minimal norm).

� If Ax= b is consistent, then x̂ is just an ordinary solution. (in that case, Ax̂ ¡ b= 0)

� Interesting case: Ax= b is inconsistent. (in particular, if the system is overdetermined)

The normal equations

The following result provides a straightforward recipe (thanks to the FTLA) to find least squares
solutions for all systems Ax= b.

Theorem 45. x̂ is a least squares solution of Ax= b
() ATAx̂=ATb (the normal equations)

Proof.
x̂ is a least squares solution of Ax=b
() Ax̂¡ b is as small as possible

() Ax̂¡ b is orthogonal to col(A)

()
FTLA

Ax̂¡b is in null(AT)

() AT(Ax̂¡b)=0

() ATAx̂=ATb
�
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Example 46. Find the least squares solution to Ax= b, where

A=

24 1 1
¡1 1
0 0

35; b=

24 2
1
1

35:
Solution. First, ATA=

�
1 ¡1 0
1 1 0

�24 1 1
¡1 1
0 0

35=� 2 0
0 2

�
and ATb=

�
1 ¡1 0
1 1 0

�24 2
1
1

35=�
1
3

�
.

Hence, the normal equations ATAx̂=ATb take the form
�
2 0
0 2

�
x̂=

�
1
3

�
.

Solving, we immediately find x̂=
�
1/2
3/2

�
.

Check. Since Ax̂=

24 2
1
0

35, the error is Ax̂¡b=
24 0

0
¡1

35. Recall that the error must be orthogonal to col(A)!

This error is indeed orthogonal to col(A) because
24 0

0
¡1

35�
24 1
¡1
0

35=0 and

24 0
0
¡1

35�
24 1
1
0

35=0.

Comment. Why are the normal equations so particularly simple (compare with example below for the typical
case) here? Note how each entry of the product ATA is computed as the dot product of two columns of A
(matrix products of a row of AT times a column of A). That ATA is a diagonal matrix reflects the fact that
the two columns of A are orthogonal to each other.

Example 47. Find the least squares solution to Ax= b, where

A=

24 1 2
3 1
0 5

35; b=

24 1
1
1

35:
Solution. First, ATA=

�
1 3 0
2 1 5

�24 1 2
3 1
0 5

35=� 10 5
5 30

�
and ATb=

�
1 3 0
2 1 5

�24 1
1
1

35=�
4
8

�
.

Hence, the normal equations ATAx̂=ATb take the form
�
10 5
5 30

�
x̂=

�
4
8

�
.

Since
�
10 5
5 30

�¡1
=

1

275

�
30 ¡5
¡5 10

�
=

1

55

�
6 ¡1
¡1 2

�
, we find x̂= 1

55

�
6 ¡1
¡1 2

��
4
8

�
=

1

55

�
16
12

�
.

Check. Since Ax̂= 1

55

24 40
60
60

35, the error Ax̂¡b= 1

55

24 ¡15
5
5

35= 1

11

24 ¡31
1

35must be orthogonal to col(A).

The error is indeed orthogonal to col(A) because
24 1
3
0

35� 111
24 ¡31

1

35=0 and

24 2
1
5

35� 111
24 ¡31

1

35=0.
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Any serious linear algebra problems are done by a machine. Let us see how to use the open-source
computer algebra system Sage to do basic computations for us.
Sage is freely available at sagemath.org. Instead of installing it locally (it's huge!) we can conveniently use it
in the cloud at cocalc.com from any browser. For short computations, like the one below, you can also just use
the input field on our course website.
Sage is built as a Python library, so any Python code is valid. Here, we will just use it as a fancy calculator.

Let's revisit Example 38 and let Sage do the work for us:

Sage] A = matrix([[1,2,1,4],[2,4,0,2],[3,6,0,3]])

Sage] A.rref()24 1 2 0
0 0 1
0 0 0

35
Similarly, if we wanted to compute a basis for null(AT), we can simply do:

Sage] A.transpose().rref()266664
1 0 0

0 1
3
2

0 0 0

377775
Here are some other standard things we might be interested in (compare with Example 17):

Sage] A = matrix([[4,0,2],[2,2,2],[1,0,3]])

Sage] A.eigenvalues()

[5; 2; 2]

Sage] A.eigenvectors_right()��
5;

��
1; 1;

1
2

��
; 1

�
; (2; [(1; 0; ¡ 1); (0; 1; 0)]; 2)

�
Sage] A.eigenmatrix_right()0BBBB@

24 5 0 0
0 2 0
0 0 2

35;
266664
1 1 0
1 0 1
1
2
¡1 0

377775
1CCCCA

Sage] A.rank()

3

Sage] A.determinant()

20

Sage] A.inverse()266666666664
3
10

0 ¡1
5

¡1
5

1
2
¡1
5

¡ 1
10

0
2
5

377777777775
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Application: least squares lines

Given data points (xi; yi), we wish to find optimal parameters a; b such that yi�a+ bxi for all i.

Example 48. Determine the line that �best fits� the data points (2; 1); (5; 2); (7; 3); (8; 3).
Comment. Can you see that there is no line fitting the data perfectly? (Check out the last two points!)

Solution. We need to determine the values a; b for the best-fitting line y= a+ bx.
If there was a line that fit the data perfectly, then:

a+2b=1 (2; 1)

a+5b=2 (5; 2)

a+7b=3 (7; 3)

a+8b=3 (8; 3)

In matrix form, this is:

266664
1 x1
1 x2
1 x3
1 x4

377775
design matrixX

�
a
b

�
=

266664
y1
y2
y3
y4

377775
observation
vector y

(writing the points as (xi; yi))

Using our points, these equations become

266664
1 2
1 5
1 7
1 8

377775� ab
�
=

266664
1
2
3
3

377775. [This system is inconsistent (as expected).]

We compute a least squares solution.

XTX =

�
1 1 1 1
2 5 7 8

�266664
1 2
1 5
1 7
1 8

377775=� 4 22
22 142

�
; XTy =

�
1 1 1 1
2 5 7 8

�266664
1
2
3
3

377775=� 9
57

�
:

Solving the normal equations
�
4 22
22 142

��
a
b

�
=
�
9
57

�
, we find

�
a
b

�
=
�
2/7
5/14

�
.

Hence, the least squares line is y= 2

7
+

5

14
x.

The plot above shows our points together with this line. It does look like a very good fit!
Important comment. In what sense is this the line of �best fit�? By computing a least squares solution the way
we do, we are minimizing the error y¡X

�
a
b

�
. The components of that error are yi¡ (a+ bxi).

Hence, we see that we are minimizing the residual sum of squares SSres=
P

i [yi¡ (a+ bxi)]
2.

Also see the discussion after the next example (where we swap the role of x and y) as well as the example at
the beginning of next class (where we discuss making predictions and why minimizing SSres corresponds to
minimizing the error of those predictions).
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Example 49. (again) Determine the least squares line for the points (2; 1); (5; 2); (7; 3); (8; 3).

Solution. Let's repeat the computation we did in the previous example. This time, we let Sage do the actual
work for us:

Sage] X = matrix([[1,2],[1,5],[1,7],[1,8]]); y = vector([1,2,3,3])

Sage] (X.transpose()*X).solve_right(X.transpose()*y)�
2
7
;
5
14

�

Here are some intermediate steps to help see what's going on (and that it matches our earlier work):

Sage] X.transpose()*X�
4 22
22 142

�
Sage] X.transpose()*y

(9; 57)

Let's plot the least squares line y= 2

7
+

5

14
x in Sage to marvel at the good fit!

Sage] points = [[2,1],[5,2],[7,3],[8,3]]

Sage] scatter_plot(points)

2 3 4 5 6 7 8

1

1.5

2

2.5

3

Sage] scatter_plot(points) + plot(2/7+5/14*x,1,9)

1 2 3 4 5 6 7 8 9

1

1.5

2

2.5

3

3.5
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Comment. As mentioned earlier, the least squares line minimizes the (sum of squares of the) vertical offsets:

http://mathworld.wolfram.com/LeastSquaresFitting.html

Comment. We get a (slightly) different �best fit� line if we change the role of x and y! Can you explain that?

Sage] X = matrix([[1,1],[1,2],[1,3],[1,3]]); y = vector([2,5,7,8])

Sage] (X.transpose()*X).solve_right(X.transpose()*y)�
¡ 7
11
;
30
11

�
Note that x=¡ 7

11
+

30
11
y is equivalent to y= 7

30
+

11
30
x.

Sage] scatter_plot([[2,1],[5,2],[7,3],[8,3]]) + plot(2/7+5/14*x,1,9) + plot(7/30+11/30*x,
1,9,color='red')

1 2 3 4 5 6 7 8 9

1

1.5

2

2.5

3

3.5

The explanation is that (see pictures at the beginning of this example) we are minimizing vertical offsets in one
case and horizontal offsets in the other case.
In linear regression, the relationship between a dependent variable and one or more explanatory variables is
modeled. If y is the dependent variable, with x the explanatory variable, then it is natural to minimize the error
we make in �predicting y through x� (vertical offsets). See example at the beginning of next class!
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