Homework Set 11

Problem 1

Example 18. Determine the pseudoinverse of $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & -5 & 0 \end{bmatrix}$.

Solution. For such diagonal matrices, we only need to invert the diagonal entries and transpose the dimensions.

$$A^{+} = \left[\begin{array}{cc} 1/3 & 0 \\ 0 & -1/5 \\ 0 & 0 \end{array} \right]$$

Problem 2

Example 19. Determine the pseudoinverse of $A = \begin{bmatrix} 2 & -3 \\ 0 & 2 \\ 3 & 0 \end{bmatrix}$ (without computing the SVD first).

Example 20. Determine the pseudoinverse of $A = \begin{bmatrix} 2 & -2 & 1 \end{bmatrix}$ (by computing the SVD first).

Solution. (skipping most work) As observed in Examples 176 and 177 in the lecture notes, we can avoid almost all computations and conclude that, if $A = a^T$ is a row vector, then

$$A^{+} = \frac{a}{\|a\|^{2}} = \frac{1}{9} \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}.$$

Solution. (too much work but good pratice) Let us embrace the opportunity to practice. We first compute the SVD of A:

First, we need to diagonalize $A^TA = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -4 & 2 \\ -4 & 4 & -2 \\ 2 & -2 & 1 \end{bmatrix}$. Let us write |A| for $\det(A)$:

$$\begin{vmatrix} 4 - \lambda & -4 & 2 \\ -4 & 4 - \lambda & -2 \\ 2 & -2 & 1 - \lambda \end{vmatrix} = (4 - \lambda) \cdot \begin{vmatrix} 4 - \lambda & -2 \\ -2 & 1 - \lambda \end{vmatrix} - (-4) \cdot \begin{vmatrix} -4 & -2 \\ 2 & 1 - \lambda \end{vmatrix} + 2 \cdot \begin{vmatrix} -4 & 4 - \lambda \\ 2 & -2 \end{vmatrix}$$
$$= (4 - \lambda) \cdot (\lambda^2 - 5\lambda) + 4 \cdot (4\lambda) + 2 \cdot (2\lambda) = -\lambda^3 + 9\lambda^2 = \lambda^2 (9 - \lambda)$$

Hence, the eigenvalues of A^TA are 9,0,0.

Hence, the 9-eigenspace has basis $\begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$.

$$\bullet \quad \lambda = 0: \begin{bmatrix} 4 & -4 & 2 \\ -4 & 4 & -2 \\ 2 & -2 & 1 \end{bmatrix} \xrightarrow{R_2 + R_1 \Rightarrow R_2} \begin{bmatrix} 4 & -4 & 2 \\ R_3 - \frac{1}{2}R_1 \Rightarrow R_3 \\ \Rightarrow \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\frac{1}{4}R_1 \Rightarrow R_1} \begin{bmatrix} 1 & -1 & \frac{1}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Hence, the 0-eigenspace has basis $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\begin{bmatrix} -1/2\\0\\1 \end{bmatrix}$ or, easier for working by hand, $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\begin{bmatrix} -1\\0\\2 \end{bmatrix}$. For the

SVD we have to turn this basis into an orthogonal one.

Applying Gram–Schmidt to the basis $m{w}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $m{w}_2 = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}$, we construct the orthogonal basis $m{q}_1 = m{w}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $m{q}_2 = m{w}_2 - \frac{m{w}_2 \cdot m{q}_1}{m{q}_1 \cdot m{q}_1} \, m{q}_1 = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} - \frac{-1}{2} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -1 \\ 1 \\ 4 \end{bmatrix}$.

$$\text{Thus } A^T\!A = \!PDP^T \text{ with } D \!=\! \left[\begin{array}{ccc} 9 & & \\ & 0 & \\ & & 0 \end{array} \right] \text{ and } P \!=\! \left[\begin{array}{cccc} 2/3 & 1/\sqrt{2} & -1/\sqrt{18} \\ -2/3 & 1/\sqrt{2} & 1/\sqrt{18} \\ 1/3 & 0 & 4/\sqrt{18} \end{array} \right] \!.$$

[We had to normalize the eigenvectors! Otherwise, we would only have a diagonalization PDP^{-1} .]

- $\bullet \quad \text{Since } A^T\!A = V\Sigma^2 V^T \text{, we conclude that } V = \left[\begin{array}{ccc} 2/3 & 1/\sqrt{2} & -1/\sqrt{18} \\ -2/3 & 1/\sqrt{2} & 1/\sqrt{18} \\ 1/3 & 0 & 4/\sqrt{18} \end{array} \right] \text{ and } \Sigma = \left[\begin{array}{ccc} 3 & 0 & 0 \end{array} \right].$
- From $Av_i = \sigma_i u_i$, we find $u_1 = \frac{1}{\sigma_1} Av_1 = \frac{1}{3} \begin{bmatrix} 2 & -2 & 1 \end{bmatrix} \begin{bmatrix} 2/3 \\ -2/3 \\ 1/3 \end{bmatrix} = 1$.

Hence,
$$A = U\Sigma V^T$$
 with $U = [\ 1\]$, $\Sigma = [\ 3\ 0\ 0\]$, $V = \left[\begin{array}{cccc} 2/3 & 1/\sqrt{2} & -1/\sqrt{18} \\ -2/3 & 1/\sqrt{2} & 1/\sqrt{18} \\ 1/3 & 0 & 4/\sqrt{18} \end{array} \right]$.

Using the SVD of A, we can easily obtain its pseudoinverse:

$$A^{+} = V \Sigma^{+} U^{T} = \begin{bmatrix} 2/3 & 1/\sqrt{2} & -1/\sqrt{18} \\ -2/3 & 1/\sqrt{2} & 1/\sqrt{18} \\ 1/3 & 0 & 4/\sqrt{18} \end{bmatrix} \begin{bmatrix} 1/3 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$$

Comments. This was good practice computing SVDs but we did a lot of work that we could have simplified: Can you see why it was clear that A^TA was going to have 0 as a repeated eigenvalue? Can you see why the last two columns of P are irrelevant in our computation? Can you see how we could have obtained the first column of P without computation? [Also, can you argue geometrically why the pseudoinverse is what it is?]

Problem 4

Example 21. Find the smallest norm solution to $4x_1 + 3x_2 + 5x_3 = 3$.

Solution. If $A = [4 \ 3 \ 5]$, then the smallest norm solution is $\boldsymbol{x} = A^{+}[3]$.

From earlier computations (see, for instance, Example 177) we know that $A^+ = \frac{1}{4^2 + 3^2 + 5^2} \begin{bmatrix} 4\\3\\5 \end{bmatrix} = \frac{1}{50} \begin{bmatrix} 4\\3\\5 \end{bmatrix}$. Hence, the smallest norm solution is $\mathbf{x} = A^+ \begin{bmatrix} 3 \end{bmatrix} = \frac{3}{50} \begin{bmatrix} 4\\3\\5 \end{bmatrix}$.

Problem 5

Example 22. Determine the best rank 1 approximation of $A = \begin{bmatrix} 1 & -2 \\ 0 & -1 \\ 1 & 0 \end{bmatrix}$.

Solution. We first compute the SVD of A:

 $\begin{aligned} \bullet \quad & \text{First, we need to diagonalize } A^T A = \left[\begin{array}{cc} 1 & 0 & 1 \\ -2 & -1 & 0 \end{array} \right] \left[\begin{array}{cc} 1 & -2 \\ 0 & -1 \\ 1 & 0 \end{array} \right] = \left[\begin{array}{cc} 2 & -2 \\ -2 & 5 \end{array} \right]. \\ & \det \left(\left[\begin{array}{cc} 2 - \lambda & -2 \\ -2 & 5 - \lambda \end{array} \right] \right) = (2 - \lambda)(5 - \lambda) - 4 = \lambda^2 - 7\lambda + 6 = (\lambda - 1)(\lambda - 6) \end{aligned}$

Hence, the eigenvalues of A^TA are 6, 1.

 $\circ \quad \lambda = 6: \begin{bmatrix} -4 & -2 \\ -2 & -1 \end{bmatrix} \xrightarrow{R_2 - \frac{1}{2}R_1 \Rightarrow R_2} \begin{bmatrix} -4 & -2 \\ 0 & 0 \end{bmatrix} \xrightarrow{-\frac{1}{4}R_1 \Rightarrow R_1} \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & 0 \end{bmatrix}$

Hence, the 6-eigenspace has basis $\begin{bmatrix} -1/2 \\ 1 \end{bmatrix}$ or, easier for working by hand, $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$.

 $\circ \quad \lambda = 1 \colon \left[\begin{array}{cc} 1 & -2 \\ -2 & 4 \end{array} \right] \stackrel{R_2 + 2R_1 \Rightarrow R_2}{\leadsto} \left[\begin{array}{cc} 1 & -2 \\ 0 & 0 \end{array} \right]$

Hence, the 1-eigenspace has basis $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

Thus $A^T\!A = PDP^T$ with $D = \begin{bmatrix} 6 \\ 1 \end{bmatrix}$ and $P = \frac{1}{\sqrt{5}} \begin{bmatrix} -1 & 2 \\ 2 & 1 \end{bmatrix}$.

[We had to normalize the eigenvectors! Otherwise, we would only have a diagonalization PDP^{-1} .]

- $\bullet \quad \text{Since } A^T\!A = V\Sigma^2V^T \text{, we conclude that } V = \frac{1}{\sqrt{5}} \left[\begin{array}{cc} -1 & 2 \\ 2 & 1 \end{array} \right] \text{ and } \Sigma = \left[\begin{array}{cc} \sqrt{6} & 0 \\ 0 & 1 \\ 0 & 0 \end{array} \right].$
- From $A \boldsymbol{v}_i = \sigma_i \boldsymbol{u}_i$, we find $\boldsymbol{u}_1 = \frac{1}{\sigma_1} A \boldsymbol{v}_1 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 & -2 \\ 0 & -1 \\ 1 & 0 \end{bmatrix} \frac{1}{\sqrt{5}} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \frac{1}{\sqrt{30}} \begin{bmatrix} -5 \\ -2 \\ -1 \end{bmatrix}$.

For the rank 1 approximation, we only need the first column of U, so we stop here.

Hence,
$$A = U\Sigma V^T$$
 with $U = \begin{bmatrix} -5/\sqrt{30} & * & * \\ -2/\sqrt{30} & * & * \\ -1/\sqrt{30} & * & * \end{bmatrix}$, $\Sigma = \begin{bmatrix} \sqrt{6} & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$, $V = \frac{1}{\sqrt{5}} \begin{bmatrix} -1 & 2 \\ 2 & 1 \end{bmatrix}$.

From the SVD of A, we obtain the best rank 1 approximation by only using the first columns of U and V (and truncating Σ to a 1×1 matrix):

Thus, the best rank
$$1$$
 approximation of A is $\frac{1}{\sqrt{30}} \begin{bmatrix} -5 \\ -2 \\ -1 \end{bmatrix} \begin{bmatrix} \sqrt{6} \end{bmatrix} \frac{1}{\sqrt{5}} \begin{bmatrix} -1 \\ 2 \end{bmatrix}^T = \sqrt{\frac{6}{30 \cdot 5}} \begin{bmatrix} -5 \\ -2 \\ -1 \end{bmatrix} \begin{bmatrix} -1 & 2 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 5 & -10 \\ 2 & -4 \\ 1 & -2 \end{bmatrix}.$

Comment. Like for U, we could have omitted the computation of the 1-eigenvector (second column of V).