
Sketch of Lecture 38 Wed, 4/24/2019

Linear transformations

Throughout, V and W are vector spaces.

Just like we went from column vectors to abstract vectors (such as polynomials), the concept of a matrix
leads to abstract linear transformations.
In the other direction, picking a basis, abstract vectors can be represented as column vectors (see Lecture 35).
Correspondingly, linear transformations can then be represented as matrices.

De�nition 169. A map T :V !W is a linear transformation if

T (cx+ dy)= cT (x)+ dT (y) for all x; y in V and all c; d in R.

In other words, a linear transformation respects addition and scaling:

� T (x+ y)=T (x) +T (y)

� T (cx)= cT (x)

It necessarily sends the zero vector in V to the zero vector in W :

� T (0)=0 [because T (0) =T (0 �0)= 0 �T (0)=0]

Comment. Linear transformations are special functions and, hence, can be composed. For instance, if T :
V !W and S:U!V are linear transformations, then T �S is a linear transformation U!W (sending x to
T (S(x))). If S; T are represented by matrices A; B, then T � S is represented by the matrix BA. In other
words, matrix multiplication arises as the composition of (linear) functions.

Example 170. The derivative you know from Calculus I is linear.

Indeed, the map D:

8<: space of all
di�erentiable
functions

9=;!
�
space of all
functions

�
de�ned by f(x) 7! f 0(x) is a linear transformation:

� D(f(x)+ g(x))||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
(f(x)+g(x))0

=D(f(x))|||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
f 0(x)

+D(g(x))||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
g 0(x)

� D(cf(x))||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
(cf(x))0

= cD(f(x))||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
cf 0(x)

These are among the �rst properties you learned about the derivative.

Similarly, the integral you love from Calculus II is linear:Z
a

b

(f(x)+ g(x))dx=

Z
a

b

f(x)dx+

Z
a

b

g(x)dx;

Z
a

b

cf(x)dx= c

Z
a

b

f(x)dx

In this form, we are looking at a map T :

8<:space of allcontinuous
functions

9=;!R de�ned by T (f(x)) =
Z
a

b

f(x)dx.

Example 171. Consider the space V of all polynomials p(x) of degree 3 or less. The map D:
V ! V given by p(x) 7! p0(x) is a linear. Write down the matrix M for this linear map with
respect to the basis 1; x; x2; x3.
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Solution. M =

2664
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

3775
For instance, the 3rd column says that x2 (the 3rd basis element) gets sent to 0 �1+2 �x+0 �x2+0 �x3=2x.

Example 172. Consider the map

D:

�
space of poly's
of degree 63

�
!

�
space of poly's
of degree 62

�
; p(x) 7! p0(x):

Write down the matrix M for this linear map with respect to the bases 1; x; x2; x3 and 1; x; x2.

Solution. M =

24 0 1 0 0
0 0 2 0
0 0 0 3

35
For instance, the 3rd column says that x2 (the 3rd basis element) gets sent to 0 � 1+2 � x+0 �x2=2x.

Example 173. What is the pseudo-inverse of the matrix M from the previous example. Inter-
pret your �nding.

Solution. (�nal answer only) The pseudo-inverse of
24 0 1 0 0
0 0 2 0
0 0 0 3

35 is

2664
0 0 0
1 0 0
0 1/2 0
0 0 1/3

3775.
The corresponding linear map sends 1 to x, x to 1

2
x2 and x2 to 1

3
x3. That is, the pseudo-inverse computes

the antiderivative of each monomial.
Comment. This is not surprising, since we are familiar from Calculus with the concepts of derivatives and
antiderivatives (or integrals), and that these are �pseudo� inverse to each other.

Comment. Similarly, the pseudo-inverse of

2664
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

3775 is

2664
0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/3 0

3775.
Now, the corresponding linear map sends 1 to x, x to 1

2
x2, x2 to 1

3
x3, and x3 to 0. That is, the pseudo-

inverse computes the antiderivative of each monomial, with the exception of x3 which gets send to 0 (its
antiderivative does not live in the space of polynomials of degree 3).

Example 174. (The April Fools' Day �proof� that �=4, cont'd)
In that �proof�, we are constructing curves cn with the property that cn ! c where c is the circle. This
convergence can be understood, for instance, in the same sense kcn¡ ck! 0 with the norm introduced as
we did for functions.
Since cn! c we then wanted to conclude that perimeter(cn)!perimeter(c), leading to 4!�.
However, in order to conclude from xn!x that f(xn)! f(x) we need that f is continuous (at x)!!
The �function� perimeter, however, is not continuous. In words, this means that (as we see in this example)
curves can be arbitrarily close, yet have very di�erent arc length.
We can dig a little deeper: as you learned in Calculus II, the arc length of a function y= f(x) for x2 [a; b] isZ

a

b

(dx)2+ (dy)2
p

=

Z
a

b

1+ f 0(x)2
p

dx:

Observe that this involves f 0. Try to see why the operator D that sends f to f 0 is not continuous with
respect to the distance induced by the norm

kf k=
�Z

a

b

f(x)2dx

�
1/2

:

In words, two functions f and g can be arbitrarily close, yet have very di�erent derivatives f 0 and g 0.
That's a huge issue in functional analysis, which is the generalization of linear algebra to in�nite dimensional
spaces (like the space of all di�erentiable functions). The linear operators (�matrices�) on these spaces
frequently fail to be continuous.
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Fourier series

A Fourier series for a function f(x) is a series of the form

f(x)= a0+ a1cos(x)+ b1sin(x)+ a2cos(2x)+ b2sin(2x)+ ���

You may have seen Fourier series in other classes before. Our goal here is to tie them in with
what we have learned about orthogonality.

In these other classes, you would have seen formulas for the coe�cients ak and bk. We will see where those
come from.
Observe that the right-hand side combination of cosines and sines is 2�-periodic.

Let us consider (nice) functions on [0; 2�].

Or, equivalently, functions that are 2�-periodic.

We know that a natural inner product for that space of functions is

hf ; gi=
Z
0

2�

f(t)g(t)dt:

Example 175. Show that cos(x) and sin(x) are orthogonal (in that sense).

Solution. hcos(x); sin(x)i=
Z
0

2�

cos(t)sin(t)dt=
�
1
2
(sin(t))2

�
0

2�

=0

In fact:

All the functions 1; cos(x); sin(x); cos(2x); sin(2x); ::: are orthogonal to each other!

Moreover, they form a basis in the sense that every other (nice) function can be written as a (in�nite) linear
combination of these basis functions.

Example 176. What is the norm of cos(x)?

Solution. hcos(x); cos(x)i=
Z
0

2�

cos(t)cos(t)dt=�

Why? There's many ways to evaluate this integral. For instance:

� integration by parts

� using a trig identity

� here's a simple way:

�
R
0
2�cos2(t)dt=

R
0
2�sin2(t)dt (cos and sin are just a shift apart)

� cos2(t)+ sin2(t)= 1

� So:
R
0
2�cos2(t)dt= 1

2

R
0
2�
1dx= �

Hence, cos(x) is not normalized. It has norm kcos(x)k= �
p

.
Similarly. The same calculation shows that cos(kx) and sin(kx) have norm �

p
as well.
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Example 177. How do we �nd, say, b2?
Solution. Since the functions 1; cos(x); sin(x); cos(2x); sin(2x); :::, the term b2sin(2x) is the orthogonal
projection of f(x) onto sin(2x).

In particular, b2=
hf(x); sin(2x)i
hsin(2x); sin(2x)i =

1
�

Z
0

2�

f(t)sin(2t)dx.

In conclusion:
A (nice) f(x) on [0; 2�] has the Fourier series

f(x)= a0+ a1cos(x) + b1sin(x)+ a2cos(2x)+ b2sin(2x)+ ���

where

ak=
hf(x); cos(kx)i
hcos(kx); cos(kx)i =

1
�

Z
0

2�

f(t)cos(kt)dt;

bk=
hf(x); sin(kx)i
hsin(kx); sin(kx)i =

1
�

Z
0

2�

f(t)sin(kt)dt;

a0=
hf(x); 1i
h1; 1i =

1
2�

Z
0

2�

f(t)dt:
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